Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc
|
|
- תפארת שגב
- לפני6 שנים
- צפיות:
תמליל
1 הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,, k... x X = x מעל א"ב של אינדקסים כך שלכל =,,...,k. x = z היא תת-מחרוזת משותפת של סימון: עבור מחרוזת נתונה X ו- Y אם היא תת-מחרוזת של X, Σ היא מחרוזת כך מתקיים כי וגם תת-מחרוזת של.Y מאורך X : X, את הרישא הבאה של 0 m, X נסמן ב-, m (עבור = 0... x X = x נקבל רישא ריקה). x יהיו X ו- Y שתי מחרוזות מעל א"ב Σ מאורך m ו- n בהתאמה. מהו אורך תת-המחרוזת המשותפת הארוכה ביותר של X ו- Y? טענה: תהא z k..., z = z תת-המחרוזת המשותפת הארוכה ביותר של X אם., x m = y n אזי k ו- z = x = y k m n X m ו-.Y n ו- Y הנתונים. אזי: היא תת-מחרוזת משותפת ארוכה ביותר של : x. אם m y n.y ו- X m אם א. zk x m אזי היא תת-מחרוזת משותפת ארוכה ביותר של.Y n ו- X אם ב. zk y n אזי היא תת-מחרוזת משותפת ארוכה ביותר של הוכחה: נוכיח כל מקרה בנפרד. : מקרה נניח בשלילה כי k x m. z אזי ניתן יהיה לשרשר לסוף את האיבר x m X ובכך נקבל מחרוזת משותפת של,( x m = y n ארוכה ביותר. ברור כי z z z k =... k ו- Y אשר יותר ארוכה מ- היא מחרוזת משותפת של X m ב, ו- (כי סתירה לכך ש-,Y n כל שנותר להראות הוא שהיא גם ארוכה ביותר. נניח בשלילה שלא, אזי קיימת מחרוזת משותפת ארוכה ביותר של X m ו- Y n שנסמנה W, אשר אורכה גדול ממש מ-. k על-ידי שרשור האיבר (כי ( x m = y n ל-,W נקבל מחרוזת משותפת ל- X ו- Y באורך גדול ממש מ- k סתירה. x m
2 מ ) k x m X m מקרה א.. (מקרה.ב דומה): ו- Y, כי. z נותר להראות כי תת-מחרוזת ארוכה m X ו- W,, Y אשר אורכה גדול ממש תת-מחרוזת משותפת של ביותר. נניח בשלילה כי קיימת תת-מחרוזת משותפת של X מ-. k אזי W גם מחרוזת משותפת של ו- Y (ארוכה יותר מ- ( סתירה..ש.ל.) 0 m ו-,Y X, נסמן ב- ( את אורך המחרוזת המשותפת הארוכה ביותר של,. )c לפי עובדה זו והטענה שהוכחנו ) 0. אם = 0 או = 0, אזי ברור כי = 0 ו- n קודם, ניתן לקבל את נוסחת הנסיגה הבאה: 0 = 0 or = 0, ) =, ), > 0, x = y max{, ),, )}, > 0, x y אם נחשב פונקציה זו באופן רקורסיבי, סיבוכיות הזמן תהיה אקספוננציאלית, זאת משום שיהיו ( m ) ( n ) ערכים של הפונקציה אשר יחושבו מספר פעמים. c ניתן לחשב את הפונקציה ביעילות בעזרת מטריצה (מספור האינדקסים,m. )c ניתן למלא את ערכי מטריצה זו שורה מתחיל מאפס), כאשר הערך שמעניין אותנו הוא (n אחר שורה, ובאופן זה נקבל אלגוריתם יעיל לפתרון הבעיה כי יש O(mn) תאים במטריצה כאשר () for = to m do: c (,0) 0 () for = to n do: c ( 0, ) 0 (3) for = to m do: (4) for = to n do:.o() (5) f x = y then c (, ), ) (6) else c (, ) max{, ),, )} זמן החישוב של כל תא הוא Y ו- X נעיר כי ניתן בזמן של (n O ( m למצוא את תת-המחרוזת המשותפת הארוכה ביותר של בעזרת המטריצה. c, ). n, n) הסבר: מתחילים מהתא., ) =, במידה ו- ( בשלב שבו נמצאים בתא במידה ומתבצע מעבר כזה, עוברים לתא מתקיים,. במידה ) =, ) אם, ) אם אין אפשרות כזו אז עוברים לתא ה -, ) =, ), ), ה- ). x = y וגם תנאי זה לא מתקיים, עוברים לתא (ומתקיים מהגדרת האלגוריתם). עוצרים כאשר מגיעים לתא ( )c,0 או,0) עבור, כלשהם.
3 , ( n, m ), p k m ו- n, n m תרגיל נתונה פיסת בד בגודל כאשר מספרים טבעיים לכל מספרים טבעיים. נתונות מידות k. לכל מידה נתון רווח מכירה m ו- n כאשר, k k. (לכל מידה שאינה נתונה, הרווח הוא 0.) המטרה היא לגזור את הבד כך שסך הרווח שיתקבל מגזרי הבד יהיה מרבי. בכל גזירה מותר לגזור פיסת בד לשניים, לאורכה או לרוחבה, כך שמתקבלים שני מלבנים שמידות כל אחד מהם הן מספרים טבעיים. לא ניתן לסובב את פיסת הבד או המלבנים שהתקבלו. מספר הגזירות אינו מוגבל. הציעו אלגוריתם אשר מוצא את הרווח ( nm( n m) ) המרבי שניתן לקבל מפיסת הבד הנתונה. על האלגוריתם לעבוד בזמן של O. 'c הרווח המקסימלי מפיסת בד בגודל שנגזרה ל- או יותר פיסות. (, ). הרווח ממכירת פיסת בד (לא גזורה) בגודל )p, ), )c הרווח המקסימלי מפיסת בד בגודל (גזורה או לא). ) פתרון: נגדיר: l l. c (, ) = max{ c'(, ), p(, אבחנה : לכל ו- מתקיים: {( c' (, ) אבחנה : אם א. מתקבל כאשר חוצים את פיסת הבד ע"י חתך אנכי ל- פיסות בד. c' (, ) =,, אזי 0 < l < ו- ( כך ש- c' (, אם ב. ( מתקבל כאשר חוצים את פיסת הבד ע"י חתך אופקי ל- פיסות בד. c' (, ) = ) ) אזי 0 < l < כך ש- ( ו- m m n n l l טענה : p(, ),, ) = max max{ ) )} max{,, } הוכחה: מיידית מההגדרות ומאבחנות ו-. (, בה התא ה- ( מייצג רווח C n m,n )c ביעילות נשתמש במטריצה על מנת לחשב את (m אפשרי מפיסת בד בגודל. 3
4 . for = to m do:. for = to n do: 3.,) 0 4. for = to k do: 5. n,m ) p 6. for = to m do: 7. for = to n do: 8. for l= to - 9.,) max{,), )-)} 0. for l= to -.,) max{,),,,-}. return n,m). O nm n m סיבוכיות: ניתן לראות כי סיבוכיות האלגוריתם היא ( ( )) הוכחת נכונות: נובעת מנכונות הטענה הבאה:., ) =, טענה : עם סיום הלולאה בשורות 0- מתקיים ( הוכחה: באינדוקציה על. c,) = p( n, m ) ( בסיס: =. מאחר ולא ניתן לחתוך פיסת בד בגודל אז אם קיים,( n אחרת = 0,). עפ"י האתחול,) מאותחל בהתאם ולא משתנה, m כך ש- (,) = ) בהמשך., ( ברגע ) ונסתכל על התא ה-, ' '< כך ש- ( ', ') לכל C ( ', ') = ', צעד: נניח כי (' חישוב ערכו. עפ"י טענה מתקיים כי., ) = max{ p(, ),max{ ) )},max{,, }} לכן עפ"י הנחת האינדוקציה מתקיים כי., ) = max{ p(, ),max{ ) )},max{,, }} 8-9,, ) = p(, ) נשים לב כי לאחר האתחול לכן לאחר שורות ולאחר שורות מ. מתקיים כי מתקיים כי.ש.ל. 0-, ) = max{ p(, ),max{ ) )}}, ) = max{ p(, ),max{ ) )},max{,, }}, בהתאמה. זאת משום ש(לדוגמא) ו- / ו-.3 4 הערה: בשורות 8 ו- 0 מספיק לרוץ עם l עד / לא משנה אם חותכים פיסת בד של 9 3 ל- פיסות 3 4 ו- 5 3, או ל- פיסות 5 3 שימו לב שלייצוג הקלט יש צורך ב- ((n O (log( m הקלט ב- N ביטים (בהנחה ש- k קבוע). כלומר, אם נייצג את גודל זמן הריצה אקספוננציאלי ב-. N למעשה, האלגוריתם אינו פולינומיאלי אלא פסאודו-פולינומיאלי. 4
5 תרגיל 3 קבוצה בלתי-תלויה מקסימום בעצים בהינתן גרף לא מכוון E) G = ( V, קבוצת צמתים V ' V נקראת קבוצה בלתי-תלויה. ( u, ) E כך ש- u, V ' אם לא קיימים (Independent Set) הציעו אלגוריתם שבהינתן עץ לא-מכוון (E T = ( V, מוצא קבוצה בלתי-תלויה מקסימום ב- T. פתרון: אלגוריתם חמדן (בוחר את כל העלים מגלח אותם וממשיך איטרטיבית). הציעו אלגוריתם לפתירת הבעיה הממושקלת בה לכל צומת יש רווח, ) ( w, ויש למצוא קבוצה בלתי-תלויה בעלת רווח מקסימום. שימו לב שהגירסא הלא ממושקלת הינה מקרה פרטי בו לכל צומת רווח של יחידה אחת. בעיה זו הינה דוגמא יפה המראה כי במקרים מסוימים האלגוריתם החמדן מספיק לגירסא הלא ממושקלת אך על מנת לפתור את הבעיה הממושקלת יש צורך להשתמש בתכנות דינאמי. פתרון: נכוון את קשתות T כך שיתקבל עץ מכוון (למשל ע"י הרצת DFS או BFS החל מצומת ונגדיר את הערכים הבאים לכל צומת : V ( r V () S משקל קבוצה בלתי-תלויה בעלת רווח מקסימום אשר מכילה את הצומת בתת-העץ שמושרש ב-. S () משקל קבוצה בלתי-תלויה בעלת רווח מקסימום אשר לא מכילה את הצומת העץ שמושרש ב-. עבור עלה. S ( ) = ו- 0 S ( ) = w( ) נחשב את הערכים הנ"ל עבור צומת, בהנחה שחושבו כבר לכל בניו של S ( ) = w( ) S ( u), בתת- chldren(), כך: S ( ) = u chldren( ) u chldren( ) max{ S ( u), S ( u)} גודל הקבוצה הבלתי תלויה מקסימום הוא כמובן {(r (. max{ S ( r), S. S ( r) > S ( r) שייך לקבוצה אם r לכל צומת אחר באופן הבא: אם u ב-( u S ( בחישוב שהוא בן של צומת נחליט האם u בקבוצה אז. S () חלק מהקבוצה הבלתי תלויה מקסימום u לא בקבוצה. אחרת, נחליט בהתאם לשימוש ב- (u) S או סיבוכיות: לאחר כיוון העץ (O(V ) ) הערכים הנ"ל. הזמן שיש להשקיע בכל צומת הוא יש לטייל עליו בסדר עבור גרפים כלליים לא ידוע אלגוריתם פולינומיאלי לבעיה. pre-order ולחשב לכל צומת את )d )O. לאחר חישוב הערכים ניתן לטייל על )) 5
6 העץ בסדר post-order על מנת למצוא את אברי הקבוצה. שוב הזמן שיש להשקיע בכל צומת הוא.O(V ) לכן סה"כ הזמן הוא )O, )d )) להלן דוגמה לחישוב קבוצה בלתי תלויה בגודל מקסימום בעץ כלומר המקרה הלא ממושקל שבו w ( ) = לכל צומת. לצד כל צומת מגדירים את הקבוצה הבלתי תלויה. מסומנים הערכים. S הצמתים הלבנים ( ), S ( ) שימו לב שהפתרון תואם לפתרון החמדני. להלן דוגמא למקרה הממושקל שבו האלגוריתם החמדן לא מייצר קבוצה בלתי-תלוייה בעלת רווח מקסימום. לעומתו, האלגוריתם המשתמש בתיכנות דינאמי מוצא פיתרון אופטימאלי. המשקל של הצומת רשום בתוכו. 0 0, 0 0,, 0, 0, 0, 0 0 0, 0 6
7 תרגיל 4 בעיית תרמיל הגב (Knapsack) נתון תרמיל שלו קיבולת משקל אפשרית נתונים משקל n ונתונים W עצמים,a,a,K an באופן שלכל עצם a w ורווח. בעיית תרמיל הגב היא בעיית בחירת תת-קבוצה של עצמים לאריזה p בתרמיל באופן שהרווח הכולל עבורם יהיה מקסימלי תוך שאיננו מפרים את אילוץ המשקל. פתרון: a, { בלבד a,..., a} את הרווח המקסימלי כאשר בוחרים עצמים מתוך הקבוצה )F, נסמן ב- (w כך שסכום משקליהם לא יעלה על ברור ש בנוסף: הסבר: F(, w), F(, w) = max{ F(, w), p. w. F(0, w ) = 0 > w F(, w w )}, otherwse w אם משקל העצם ה- גדול מ- w אחרת, הוא אינו יכול להיות חלק מהפתרון האופטימלי. יש לבחור את הטובה מבין שתי האפשרויות: () הרווח המקסימלי כאשר העצם ה- אינו חלק מהפתרון האופטימלי, ו-( ) הרווח המקסימלי כאשר העצם ה- חלק מהפתרון האופטימלי. ( n ) ( W ) סיבוכיות: נממש בעזרת מטריצה (נתעניין כמובן בתא ה- ( n,w בסיבוכיות 3. O(nW ) לדוגמה, נתונה המטריצה שתחושב עבור 4 פריטים במשקל 5,4,6,3 ורווח 0,40,30,50, בהתאמה. ותרמיל בגודל 0. שאלה: לאחר חישוב המטריצה, כיצד נמצא את הפתרון האופטימלי (פריטים ו- 4 בדוגמה)? 3 גם במקרה זה מדובר באלגוריתם פסאודו-פולינומיאלי. 7
8 תרגיל 5 בעיית הסוכן הנוסע -TSP) (Traelng Salesman Problem אחת הבעיות המפורסמות ביותר במדעי המחשב היא בעיית הסוכן הנוסע: נתונה רשת של n ערים {n,...,, { וביניהן כבישים כך כ- d מייצג את המרחק בין עיר לעיר. סוכן-נוסע רוצה לצאת מעיר, לבקר בכל שאר הערים בכל עיר פעם אחת בדיוק, ולחזור לעיר ממנה יצא. באיזה סדר עליו לבקר בערים כך שהמרחק שייסע יהיה קטן ככל האפשר? פתרון נאיבי יהיה לבדוק את כל ( n )! לא ידוע פתרון פולינומיאלי לבעיה) המבוסס על תכנון דינאמי. האפשרויות. נראה פתרון יעיל יותר (אך לא פולינומיאלי,A )c את מחיר המסלול הקל ביותר מ- ל- k אשר עובר דרך כל הצמתים בקבוצה נסמן ב- (k. A {,3,..., n} הפתרון האופטימלי יהיה: } mn{ c ({,3,..., n} \ { k}, k) d k n c ( A, k) mn{ A \ { }, ) dk,a )c יעשה עפ"י הנוסחה הבאה: } חישוב (k = A k סיבוכיות: יש לחשב ערכים, חישוב כל ערך מתבצע ב- O(n) לכן סה"כ O( n n ) O( n n ) טוב יותר מהפתרון הנאיבי. 8
תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח
תכנות דינמי פרק 6, סעיפים -6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח בסוף את הטוב ביותר. סכום חלקי sum) (subset הקלט: סדרה
קרא עודתכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה
תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר
קרא עודהטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור
תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(
קרא עודMicrosoft Word - ExamA_Final_Solution.docx
סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד
קרא עודתכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0
22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור
קרא עודפקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:
קרא עודMicrosoft Word - Questions Booklet Spring 2009
אלגוריתמים 1 חוברת תרגילים נא לשלוח כל הערה לגיל כהן במייל cohen@cs.technion.ac.il מפתח שאלות לפי נושאים 1, 45, 54, 55, 56, 76 5, 63 :BFS :DFS מיון טופולוגי: 17, 31, 32, 57, 67, 68 2, 25, 26, 28, 50 21,
קרא עודמקביליות
תכונות בטיחות Safety Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון 2 תזכורת: תכונות זמן ליניארי Linear Time Properties תכונות זמן-ליניארי מתארות קבוצת עקבות שהמערכת צריכה לייצר מכוונים ללוגיקה
קרא עודמקביליות
תכונות שמורה Invariant Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון 2 בדיקות מודל Checking( )Model מערכת דרישות מידול פירמול בדיקות מודל )Model Checking( מודל של המערכת תכונות פורמליות סימולציה
קרא עודתורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב
תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,
קרא עודתאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה
תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב
קרא עודתרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra
תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות
קרא עודAlgorithms Tirgul 1
- מעגלי אוילר ומסלולי אוילר תרגול 1 חידה: האם אפשר לצייר את הציורים הבאים בלי להרים את העיפרון מהנייר? 1 קצת אדמיניסטרציה אופיר פרידלר ophir.friedler@gmail.com אילן כהן - ilanrcohen@gmail.com שעות קבלה
קרא עודאנליזה מתקדמת
א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:
קרא עודשיעור 1
שיעור קצב גדילת פונקציות אנחנו בודקים את היעילות האסימפטותית של האלגוריתם, כיצד גדל זמן הריצה כאשר גודל הקלט גדל ללא גבול. בדר"כ אלגוריתמים עם "סיבוכיות" ריצה טובה יותר יהיו יעילים יותר מלבד לקלטים קצרים
קרא עודמספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי
מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל
קרא עודהגשה תוך שבוע בשעת התרגול
מרצה: שולי וינטנר. מתרגל: עזרא דאיה. מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ה, 6..5 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב
קרא עודאוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג,.6.013 משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם 8 עמודי שאלון )כולל עמוד זה(. עליכם לכתוב את התשובות על
קרא עודעב 001 ינואר 12 מועד חורף פתרונות עפר
ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית
קרא עודמבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים
מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t
קרא עודתוכן העניינים
הוצאת חושבים קדימה הילה קדמן # חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527
קרא עודאוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו
אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', 31.1.2017 מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבוני, דולב שרון הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה
קרא עודמבוא למדעי המחשב
מבוא כללי לתכנות ולמדעי המחשב 1843-0310 מרצה: אמיר רובינשטיין מתרגל: דין שמואל אוניברסיטת תל אביב סמסטר חורף 2017-8 חלק ב - מבוא לקריפטוגרפיה שיעור 5 (offset מונחים בסיסיים צופן קיסר (היסט,.1.2 1 Today
קרא עודPRESENTATION NAME
נכתב ע"י כרמי גרושקו. כל הזכויות שמורות 2010 הטכניון, מכון טכנולוגי לישראל הקצאה דינמית )malloc( מערכים דו-מימדיים סיבוכיות: ניתוח כזכור, כדי לאחסן מידע עלינו לבקש זכרון ממערכת ההפעלה. 2 עד עכשיו: הגדרנו
קרא עודמועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו
מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות
קרא עודTutorial 11
מבוא לשפת C תרגול 8: מערכים רב-ממדיים תרגילים בנושא מערכים ורקורסיה מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקנשטיין, איתן אביאור וסאהר אסמיר עבור הקורס "מבוא למדעי המחשב" נכתב ע"י טל כהן, עודכן ע"י
קרא עודתוכן העניינים
הוצאת חושבים קדימה הילה קדמן חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527 kadman11@gmail.com
קרא עודמבוא לתכנות ב- JAVA תרגול 7
מבוא לתכנות ב- JAVA תרגול 8 תזכורת - מבנה של פונקציה רקורסיבית.2 פונקציה רקורסיבית מורכבת משני חלקים עיקריים 1. תנאי עצירה: מקרה/מקרים פשוטים בהם התוצאה לא מצריכה קריאה רקורסיבית לחישוב צעד רקורסיבי: קריאה
קרא עודתרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L
תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,
קרא עודPowerPoint Presentation
מבוא למדעי המחשב תירגול 6: כתובות ומצביעים 1 תוכנייה מצביעים מצביעים ומערכים, אריתמטיקה של מצביעים 2 3 מצביעים תזכורת- כתובות זיכרון הזיכרון כתובת התא #1000 #1004 #1008 ערך השמור בתא תא 10-4 לא מאותחל
קרא עודמספר מחברת: עמוד 1 מתוך 11 ת"ז: תשע"א מועד ב סמסטר א' תאריך: 00:11 שעה: 0 שעות הבחינה: משך כל חומר עזר אסור בשימוש בחינה בקורס: מבוא למדעי ה
עמוד 1 מתוך 11 תשע"א מועד ב סמסטר א' 14.2.2011 תאריך: 00:11 שעה: 0 שעות הבחינה: משך כל חומר עזר אסור בשימוש בחינה בקורס: מבוא למדעי המחשב יש לענות על כל 5 השאלות. בכל השאלות במבחן יש לכתוב פונקציות יעילות
קרא עודמבוא למדעי המחשב - חובלים
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב סמסטר ב' תשע"ב בחינת סיום, מועד ב',.02..9.7 מרצה: אורן וימן מתרגלים: נעמה טוויטו ועדו ניסנבוים מדריכי מעבדה: מחמוד שריף ומיקה עמית משך המבחן: שעתיים חומר
קרא עודMicrosoft Word - SDAROT 806 PITRONOT.doc
5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את
קרא עודמבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב
מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180
קרא עודמתמטיקה של מערכות
מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות
קרא עודפתרון 2000 א. טבלת מעקב אחר ביצוע האלגוריתם הנתון עבור הערכים : פלט num = 37, sif = 7 r האם ספרת האחדות של sif שווה ל- num num 37 sif 7 שורה (1)-(2) (
פתרון 000 א. טבלת מעקב אחר ביצוע האלגוריתם הנתון עבור הערכים : num = 3, sif = r האם ספרת האחדות של sif שווה ל- num num 3 sif (1)-() (3) () אמת ) = ( 3 3 יודפס: 3. ב. פתרון שאלה 11 עבור הערכים: עבור סעיף
קרא עודMicrosoft Word - Sol_Moedb10-1-2,4
הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל
קרא עודמקביליות
PROMELA גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון עדכון אחרון: 21:40 15/06/2013 2 שפת מ פ ר ט עם ס מ נ ט יק ה מוגדרת באופן מתמטי "שפת תכנות" למודלים המטרה: לאפשר גם לכאלה שאינם חוקרים בתחום לבנות
קרא עודSlide 1
Introduction to Programming in C תרגול 8 1 1 רקורסיה תזכורת הגדרה: המונח רקורסיה (recursion) מתאר מצב שבו פונקציה קוראת לעצמה באופן ישיר או באופן עקיף. שימוש: נוח להשתמש בפונקציות רקורסיביות על מנת לפתור
קרא עודפתרונות לדף מס' 5
X הוכיחו כי קבוצה X סגורה אמ"מ פתוחה P נקודה כלשהי עלינו למצוא כך ש- X P X פתרון: תהא X קבוצה סגורה ניקח נניח בשלילה כי לא קיים כזה, ז"א לכל קיימת כך ש- X מכיוון ש- P P נסיק כי d P, P סגורה מתקיים P B
קרא עודתאריך הבחינה 30
אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א
קרא עודאוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך
קרא עודשעור 6
שעור 6 Open addressing אין רשימות מקושרות. (נניח שהאלמנטים מאוחסנים בטבלה עצמה, לחילופין קיים מצביע בהכנסה המתאימה לאלמנט אם אין שרשור). ב- addressing open הטבלה עלולה להימלא ב- factor α load תמיד. במקום
קרא עודמבוא למדעי המחשב
מבוא למדעי המחשב שימוש במחסנית - מחשבון תוכן עניינים prefix כתיבת ביטויים ב-,infix ו- postfix postfix prefix,infix ביטויים ב- כתיבת ו- infix נוסח כתיבה ב- (operator אנו רגילים לכתוב ביטויים חשבוניים כדוגמת
קרא עודמבוא למדעי המחשב - חובלים
החוג למדעי המחשב אוניברסיטת חיפה מבוא למדעי המחשב סמסטר א' תשע"ג בחינת סיום, מועד ב', 20.02.2013 מרצה: ריטה אוסדצ'י מתרגלת: נעמה טוויטו מדריך מעבדה: מחמוד שריף משך המבחן: שעתיים חומר עזר: ספר של Kernighan
קרא עודמטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו
מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה
קרא עודאוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך
קרא עודMicrosoft Word - c_SimA_MoedB2005.doc
מרצה: שולי וינטנר. מתרגל: עזרא דאיה. מבוא למדעי המחשב בחינת מועד ב', סמסטר א' תשס"ה,.2.2005 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. ודאו כי בטופס שבידיכם עמודים. יש לכתוב
קרא עוד<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>
האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע
קרא עודPowerPoint Presentation
תכנות מתקדם בשפת Java אוניברסיטת תל אביב 1 תוכנה 1 תרגול 3: עבודה עם מחרוזות )Strings( מתודות )Methods( 1 תכנות מתקדם בשפת Java אוניברסיטת תל אביב 2 מחרוזות )STRINGS( 3 מחרוזות String s = Hello ; מחרוזות
קרא עודáñéñ åîéîã (ñéåí)
מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא
קרא עודמבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות
מבוא לאנליזה נומרית na191 Assignmnt 2 solution - Finding Roots of Nonlinar Equations y cos() שאלה 1 היכן נחתכים הגרפים של? y 3 1 ושל ממש פתרונות בעזרת שיטת החצייה ובעזרת Rgula Falsi )אין צורך לפתור אנליטית(
קרא עודמבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו
מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן
קרא עודמבחן 7002 פרטים כלליים מועד הבחינה: בכל זמן מספר השאלון: 1 משך הבחינה: 3 שעות חומר עזר בשימוש: הכל )ספרים ומחברות( המלצות: קרא המלצות לפני הבחינה ובדי
מבחן 7002 פרטים כלליים מועד הבחינה: בכל זמן מספר השאלון: 1 משך הבחינה: 3 שעות חומר עזר בשימוש: הכל )ספרים ומחברות( המלצות: קרא המלצות לפני הבחינה ובדיקות אחרונות לפני מסירה )עמודים 8-11( מבנה השאלון 5
קרא עודתרגול 1
תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת
קרא עודSlide 1
מבוא לשפת C תירגול 10: מצביעים, מערכים ומחרוזות שבוע שעבר... מצביעים Call by reference 2 תוכנייה קשר מצביע-מערך )אריתמטיקה של מצביעים( העברת מערכים לפונקציה מחרוזות דוגמה 3 קשר מצביע-מערך 4 תזכורת: תמונת
קרא עוד. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ
. [,] ו 0 f() f() עמוד מתוך 6 ז. אולחא מס' הקורס 97 חדו''א הנ מכונות f ( ) ( )( )( ) f (,), תשובות I ) פונ' לכן קיים פתרון רציפה וגזירה בקטע כך ש 0 ) (? f ( ) +, ± ± 0.58 (, ),.58,.4 יש n פעמים להשתמש
קרא עודאוניברסיטת בן גוריון בנגב תאריך המבחן: שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: מס' הקורס : הנדסת תעשיה וניהול מ
אוניברסיטת בן גוריון בנגב תאריך המבחן: 12.02.17 שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: 202.1.9031 מס' הקורס : הנדסת תעשיה וניהול מיועד לתלמידי : א' מועד א' סמ' שנה תשע"ד 3 שעות משך
קרא עודMicrosoft Word B
מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: 1. ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב
קרא עוד2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק
דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור
קרא עוד. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים
שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4
קרא עודMicrosoft Word - c_SimA_MoedA2006.doc
מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ו,..006 מרצה: מתרגלת: גב' יעל כהן-סיגל. גב' ליאת לוונטל. משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. יש לענות על כל השאלות.. קראו
קרא עוד234114
)234117 )234114 \ סמסטר חורף תשע"ז 2017 מבחן מסכם מועד א', 21 לפברואר 2 3 4 1 1 מספר סטודנט: רשום/ה לקורס: משך המבחן: 3 שעות. חומר עזר: אין להשתמש בכל חומר עזר. הנחיות כלליות: מלאו את הפרטים בראש דף זה
קרא עודMicrosoft Word - 01 difernziali razionalit
פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות
קרא עודתרגול 1
מבוא למדעי המחשב 2019 תרגול 5 מחרוזות, חתימות ורקורסיה מחרוזות רצף של תווים רקורסיה קריאה של מתודה לעצמה באופן ישיר או עקיף ראינו בהרצאה מחרוזות: תווים, חתימות: העמסה- String,הצהרה, overloading אתחול רקורסיה:
קרא עודתרגיל בית מספר 1#
תרגיל בית מספר 6 )אחרון!( - להגשה עד 12 ביוני )יום ראשון( בשעה ::225 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הגשה:
קרא עודשיטות הסתברותיות ואלגוריתמים חוברת התרגילים 25 באוקטובר 2015 חוברת זו מכילה תרגילים נבחרים מהיסטוריית הקורס ופתרונם. בשעות האימון יוצג מבחר מהתרגילים
שיטות הסתברותיות ואלגוריתמים חוברת התרגילים 5 באוקטובר 05 חוברת זו מכילה תרגילים נבחרים מהיסטוריית הקורס ופתרונם. בשעות האימון יוצג מבחר מהתרגילים בחוברת. מרחק בין התפלגויות קרבה בין התפלגויות עבור שתי
קרא עודMicrosoft Word - hedva 806-pitronot-2011.doc
ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על
קרא עודתשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,
קרא עודתרגיל בית מספר 1#
ב 4 תרגיל בית מספר - 1 להגשה עד 72 באוקטובר בשעה ::725 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הנחיות והערות ספציפיות
קרא עודחשבון אינפיניטסימלי מתקדם 1
חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי
קרא עודשאלהIgal : מערכים דו מימדיים רקורסיה:
אוניברסיטת בן גוריון בנגב מספר נבחן : תאריך המבחן: כ"ג חשון תשע"ח 12/11/17 שמות המורים: ציון סיקסיק א' ב- C תכנות מבחן ב: 202-1-9011 מס' הקורס : הנדסה מיועד לתלמידי : ב' מועד קיץ סמ' שנה תשע"ז 3 שעות משך
קרא עודתיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות
תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...
קרא עודע 003 מרץ 10 מועד מיוחד פתרונות עפר
בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר
קרא עודפתרון מוצע לבחינת מה"ט ב_שפת c מועד ב אביב תשע"ט, אפריל 2019 מחברת: גב' זהבה לביא, מכללת אורט רחובות שאלה מספר 1 מוגדרת מחרוזת המורכבת מהספרות 0 עד 9.
פתרון מוצע לבחינת מה"ט ב_שפת c מועד ב אביב תשע"ט, אפריל 2019 מחברת: גב' זהבה לביא, מכללת אורט רחובות שאלה מספר 1 מוגדרת מחרוזת המורכבת מהספרות 0 עד 9. הדפסה ראשונה: מתבצעת לולאה שרצה מאפס עד אורך המחרוזת.
קרא עודData Structure Assignment no.3 תאריך הגשה: p.m. 11/09/16, 23:59 את העבודה יש להגיש בזוגות במערכת ההגשות.submission system על העבודה להיות מוגשות כקובץ
Data Structure Assignment no.3 תאריך הגשה: p.m. 11/09/16, 23:59 את העבודה יש להגיש בזוגות במערכת ההגשות.submission system על העבודה להיות מוגשות כקובץ pdf יחיד בלבד. הנכם נדרשים לנסח תשובות ברורות עליכם
קרא עודמבוא למדעי המחשב
מבוא למדעי המחשב מחרוזות, חתימה של פונקציה ומעטפות תוכן עניינים טיפוסים מורכבים טיפוסים מורכבים ערך שם טיפוס 12 m int undef. x boolean true y boolean arr int[] כאלה שעשויים להכיל יותר מערך פרימיטיבי אחד
קרא עודתרגיל בית מספר 1#
תרגיל בית מספר - 3 להגשה עד 15 באפריל בשעה 23:55 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הגשה: תשובותיכם יוגשו בקובץ
קרא עוד<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>
< 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות
קרא עודעבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות
עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו
קרא עודמהוא לתכנות ב- JAVA מעבדה 3
מבוא לתכנות ב- JAVA מעבדה 3 נושאי התרגול לולאות ניפוי שגיאות לולאות - הקדמה כיצד הייתם כותבים תוכנית שתדפיס את המספרים השלמים בין 1 ל- 100 בעזרת הכלים שלמדתם עד עתה? חייבת להיות דרך אחרת מאשר לכתוב 100
קרא עודמבוא למדעי המחשב
מבוא למדעי המחשב גרפים 1 תוכן עניינים סיכום ביניים מה היה לנו? מושג האלגוריתם, תכנות פרוצדורלי הכרות עם בעיות במדעי המחשב הכרות עם בעיות ברקורסיה מתקדמת (כולל (memoization תכנות מונחה עצמים (מחלקה, הורשה,
קרא עודMicrosoft Word - 28
8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת
קרא עודתוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום
תוכן העניינים: פרק 2 3 צמצומים ומימושים של פונקציות בוליאניות 2 צמצומים של פונקציות באמצעות מפת קרנו: 2 שאלות: 2 תשובות סופיות: 4 צמצום באמצעות שיטת 6:QM שאלות: 6 תשובות סופיות: 7 מימושים בעזרת פונקציות
קרא עודמשוואות דיפרנציאליות מסדר ראשון
אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g
קרא עודהטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב הוראות הגשה: ההגשה בזוגות. הוסיפו שמות, ת.ז., אי-מייל, תא אליו יש להחזיר את התרגיל ואת תשובותיכם לתרג
הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב הוראות הגשה: ההגשה בזוגות. הוסיפו שמות, ת.ז., אי-מייל, תא אליו יש להחזיר את התרגיל ואת תשובותיכם לתרגיל, הדפיסו והגישו לתא הקורס בקומה. מבנה מחשבים ספרתיים
קרא עודהגשה תוך שבוע בשעת התרגול
מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב את
קרא עודלסטודנטים במבוא מיקרו שבכוונתם לגשת למועד ב': אנו ממליצים לכם לפתור מחדש את המבחן שהיה במועד א'. עדיף לפתור בלי לראות את התשובות הנכונות מסומנות. לשם
לסטודנטים במבוא מיקרו שבכוונתם לגשת למועד ב': אנו ממליצים לכם לפתור מחדש את המבחן שהיה במועד א'. עדיף לפתור בלי לראות את התשובות הנכונות מסומנות. לשם כך העלינו לפורטל שאלון מעורבל ללא שום סימונים עליו.
קרא עודDisclaimer מסמך זה הינו סיכום און-ליין של השיעור ולא עבר עריכה כלל. מצאת טעות? שלח/י לי מייל ואתקן: 07/05/2009 קורס: מערכות ה
הרעיון: דפדוף paging וזכרון וירטואלי.1.2.3 לחלק את מרחב הכתובות לדפים בגודל קבוע )למשל )4KB את הדפים ממפים לזכרון פיסי a. לא רציף b. לא כולם העברה מזכרון לדיסק לפי הצורך מספר הדף: page = addr 4K המיקום
קרא עודסדנת תכנות ב C/C++
פקולטה: מדעי הטבע מחלקה: מדעי המחשב שם הקורס: מבוא למחשבים ושפת C קוד הקורס: 2-7028510 תאריך בחינה: 15.2.2017 משך הבחינה: שעתיים שם המרצה: ד"ר אופיר פלא חומר עזר: פתוח שימוש במחשבון: לא הוראות כלליות:
קרא עודאוניברסיטת בן גוריון בנגב תאריך המבחן: שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות מס' הקורס : מיועד לתלמידי : הנד
אוניברסיטת בן גוריון בנגב תאריך המבחן: 29.01.19 שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות 202.1.9031 מס' הקורס : מיועד לתלמידי : הנדסת תעשיה וניהול שנה תשע"ט א' סמ' א' מועד 3 שעות משך
קרא עודדף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב
דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של
קרא עוד1 תבניות טקסט מהי תבנית טקסט? שימוש ב- Characters Meta שימוש ב- Expression Grouping שימוש ב- Quantifiers תת תבניות הפונקציה preg_match הפונקציה preg_m
1 תבניות טקסט מהי תבנית טקסט? שימוש ב- Characters Meta שימוש ב- Expression Grouping שימוש ב- Quantifiers תת תבניות הפונקציה preg_ הפונקציה preg all הפונקציה str_replace הפונקציה preg_replace 2 מהי תבנית
קרא עודSlide 1
מבוא למחשב בשפת C : מערכים חד ודו-ממדיים מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקשטיין, איתן אביאור וסאהר אסמיר עבור הקורס "מבוא למדעי המחשב". עודכן ע"י דן רביב נכתב על-ידי טל כהן, נערך ע"י איתן אביאור.
קרא עודMicrosoft Word - solutions.doc
תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה
קרא עודאוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'
אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט
קרא עוד<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>
משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת
קרא עודregular_expression_examples
ביטוי רגולארי או באנגלית: Regular Expression כאשר רוצים לחפש על נושא מסוים (למשל בגוגל), כותבים בערך מה שרוצים ואז מנוע החיפוש מביא לנו המון קישורים שיש בהם את מה שחיפשנו בצורות שונות ומגוונות. אם איננו
קרא עודex1-bash
ביה"ס למדעי המחשב סמסטר חורף תשע"ח 13.12.2017 יסודות מערכות פתוחות פתרון תרגיל מס' 7 המכללה האקדמית נתניה שימו לב: כל ההערות שבתחילת תרגילים 1-6 תקפות גם לתרגיל זה. הערה 1: החל מתרגיל זה והלאה, בכל פעם
קרא עודMathType Commands 6 for Word
0 אלגברה לינארית גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות תלמידים וטעויות נפוצות וחוזרות
קרא עוד