מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים
|
|
- עלמה חמדאן
- לפני5 שנים
- צפיות:
תמליל
1 מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t R = R(s קדקדים מתקיים אחד מהבאים: בגרף יש קליקה בגודל s. 1. בגרף המשלים יש קליקה בגודל t )בגרף המקורי יש אנטי קליקה בגודל t(. 2. משפט )ארדש סקרש(: K R R(s t) ( s+t 2 s 1 ) בשני צבעים )אדום הראו שקיימת צביעה חוקית של G שצובעת 10 שאלה 1 יהי G גרף לא-מכוון ללא משולשים על n קדקדים כאשר 55 n. קדקדים באותו הצבע.. R(3 10) ( ממשפט ארדש-סקרש: 3 1 ) = (11 2 ) = 55 נתון ש - 55 n לכן בכל צביעה של צלעות K n בכחול ואדום חייב להיות משולש כחול או K 10 אדום. כיוון ש- G K n אז בפרט זה המקרה אם נצבע את צלעות G בכחול ואת הצלעות של G באדום. )כלומר זאת צביעה על K(. n כיוון שאין משולשים ב- G )כלומר אין בו קליקה בגודל 3( ממשפט ארדש-סקרש יש אנטי קליקה בגרף בגודל 10 )כלומר ב- G יש תת-גרף שבו משוכן K(. 10 כיוון שזאת אנטי-קליקה בגרף G ה קדקדים של תת-הגרף הזה מהווים קבוצה בלתי-תלויה בגרף G כלומר אין שניים מהם שמחוברים ע"י צלע. לכן אפשר לצבוע את כל העשרה באותו צבע באופן חוקי. K 4 K 8 שאלה 2 הוכיחו כי = 9.R(43) נראה את שני הדברים הבאים: 1. בכל צביעה של קשתות K 9 בכחול ואדום יש או K 4 צבוע כחול או K 3 צבוע אדום. 2. קיימת צביעה של כך שאין כחול ולא אדום. נתחיל מהוכחת החלק הראשון: K 3 תהי צביעה כלשהי של צלעות K 9 בשני צבעים. נראה כי לא ייתכן כי בכל קדקד חלות בדיוק 5 צלעות כחולות: אם כן - תת הגרף המושרה ע"י הצלעות הכחולות הינו גרף עם 9 קדקדים שבו דרגת כל קדקד היא 5. ממשפט הדרגות סכום דרגות הקדקדים בו הינו = בסתירה למשפט הדרגות. לכן בהכרח קיים קדקד v V שחלות בו לפחות 6 צלעות כחולות או לכל היותר 4 צלעות כחולות ולכן לפחות 4 צלעות אדומות. נתבונן ב- v שמצאנו.
2 מקרה א': נניח שחלות ב v 6 צלעות כחולות. נתבונן בתת הגרף המושרה ע"י קבוצת הקדקדים בקצוות של צלעות אלה שאינן v שנסמנה N )אז.) N = 6 נתבונן בצביעה בשני צבעים רק של הצלעות של 6 הקדקדים ב- N. מהכיתה = 6 (33)R ולכן בצביעה המושרית על תת הגרף המושרה ע"י N קיים K 3 אדום המהווה.G כחול ב מהווה K 4 v כחול שיחד עם או שקיים K 3 G אדום ב K 3 מקרה ב': נניח שחלות ב v 4 צלעות אדומות. נתבונן שוב בקבוצת הקדקדים בקצוות של צלעות אלה שאינן v. אם בין כל קדקדי הקבוצה צלעות כחולות קיבלנו K 4 כחול. אחרת קיימת ביניהם צלע אדומה {w u} ואז הקדקדים v u w יוצרים משולש אדום כנדרש. נראה כעת את החלק השני: נסמן את קדקדי K 8 ב נצבע את הקשת j} {i באדום אם {147} i j )כאשר )j > i ואחרת נצבע בכחול )כלומר כאשר ההפרש הוא מבין 2356(. נניח בשלילה כי בגרף יש משולש אדום. יהי i הקדקד הקטן ביותר במשולש. בנוסף ל - i במשולש יהיו חייבים להופיע שניים מהקדקדים הבאים: + 7 i i + 1 i + 4 אך בין כל שני קדקדים כאלה צלע כחולה )ההפרש אינו מבין 147(. נניח בשלילה כי בגרף יש K 4 כחול. יהי i הקדקד הקטן ביותר במרובע. בנוסף ל- i במרובע יהיו חייבים להופיע שלושה מהקדקדים הבאים:.i + 2 i + 3 i + 5 i + 6 נשים לב כי לא משנה איך נבחר שלושה קדקדים נהיה חייבים לבחור או את הזוג + 3 i i + 2 או את הזוג + 6 i i + 5 ולכן נקבל צלע אדומה )הפרש.)1
3 ב) א) משפט Mantel n2 צלעות. 4 )מקרה פרטי של משפט :)Turan יהי G גרף בעל n קדקדים וללא משולשים. אז ב G יש לכל היותר שאלה 3: נתונות 2n נקודות שונות במרחב התלת מימדי 1) > (n p 1 p 2 p 2n כך ששום שלוש מהן אינן נמצאות על אותו הישר. נסמן ב M אוסף כלשהו של n קטעים עם הקצוות בנקודות הנתונות. 1. הוכיחו כי קיים משולש שקדקדיו הם מבין הנקודות הנתונות וכל צלעותיו שייכות ל M. 2. הוכיחו כי המסקנה אינה נכונה בהכרח עבור n 2 קטעים. )כלומר קיים אוסף של n 2 קטעים שאין בו משולשים(. 1. נתבונן בגרף שקדקדיו ייצגו את הנקודות במרחב. נוסיף צלע בין שני הקדקדים אם בין שתי הנקודות שתואמות לקדקדים יש קטע ב M. עלינו להראות כי בגרף זה בהכרח קיימת קליקה בגודל 3 )משולש(. ממשפט מאנטל אם בגרף עם n קדקדים אין משולשים אזי יש בו לכל היותר n2 צלעות. 4 (2n)2 צלעות. מכאן שאם בגרף שהגדרנו לעיל אין משולשים אזי ייתכנו בו לכל היותר 4 n2 בגרף שלנו n צלעות לכן הוא בהכרח מכיל משולש. נחלק את הנקודות לשתי קבוצות זרות בגודל n. נבנה את הגרף הדו-חלקי המלא K. nn בגרף זה יש n n = n 2 צלעות. כיוון שהגרף הוא דו-חלקי אין בו מעגלים מדרגה אי-זוגית ובפרט אין בו משלושים..2 שאלה 4 יהי G גרף ללא קבוצה ב"ת בגודל 3 )כלומר בין כל 3 קדקדים יש לפחות צלע אחת(. הוכיחו שקיים מספר שלם חיובי n כך שאם מספר הקדקדים של G גדול או שווה ל - n אז G אינו מישורי. יש למצוא את הערך המינימלי של n נסמנו n 0 שמקיים את התנאי. במקום לקפוץ ישר לפתרון האופטימלי נשתמש בכלים שונים כדי לגלות אינפורמציה על n. 0 ) נתחיל במספרי רמזי. נשים לב שמהנתונים אפשר להסיק שאין משולש בגרף המשלים של G. G לכן אם נקח (3 5)R n מכך שאין ב -G כתת-גרף את K 3 הרי שיש ב -G כתת-גרף את K 5 )ההוכחה דומה לפתרון של שאלה 1( ולכן G אינו מישורי..n 0 לכן 15 R(5 3) ( ממשפט ארדש-סקרש: 5 1 ) = (6 4 ) = 15 הערה: מטבלת מספרי רמזי = 14 3) R(5 ולכן 14 0.n ) נעבור למשפט.Mantel ראינו שאין ב G הצלעות ב G הוא לכל היותר. n2 4 משולש לכן אם יש n קדקדים ב G )וגם ב - G כמובן( אז מספר אז מספר הצלעות ב - G הוא לפחות.(n 2 ) n2 4.( n 2 ) n2 = n(n 1) 4 2 n2 ובמקרה זה: = n2 אם n זוגי אז 4 4 n2 = 2n2 2n n2 = n2 2n
4 ג) ד) מהכיתה אם 6 3 V(G) E(G) > אז G אינו מישורי. אי-השוויון הזה מתקיים )עבור n זוגי( כאשר (n 2 2n > 12n 24 n 2 14n + 24 > 0 n 12 = 14± חייב להיות = 14± והמספר הזוגי הראשון שמקיים את אי-השוויון הוא = 14 n. = 14±10 2 = 7 ± 5 ) n 2 2n 4 > 3n 6 כלומר n חייב להיות זוגי ולקיים את המשוואה > 0 (2 n)(12 n). ה- n הקטן ביותר המקיים זאת.n = 14 אינו מישורי הוא 6 3n > n 2 2n+1 4 n2 = n2 1 לכן אי- השוויון הגורר ש -G אם n אי-זוגי אז 4 4 ומתקיים עבור n אי-זוגי כאשר 13 n. לפיכך ממשפט Mantel אפשר להסיק ש n ) הדרך השלישית משתמשת בתוצאות על צביעת הקדקדים של גרף. יהי χ(g) k = המספר הכרומטי של G. עבור k -צביעה של G ניתן להסיק מהנתונים שאין יותר משני קדקדים של G הצבועים באותו הצבע. מכאן נובע ש k n - 2 כאשר n הוא מספר הקדקדים של G. אם 11 n אז 6 k; ממשפט Heawood )משפט חמשת הצבעים( נובע ש G אינו מישורי. מכיוון שקיים משפט חזק יותר משפט ארבעת הצבעים ניתן להסיק שאם 9 n אז G אינו מישורי. אם כן הגענו לתוצאה.9 0 n ) כאן נוכיח ש - 9 = 0 n. לאור אי-השוויון מהסעיף הקודם מספיק למצוא גרף מישורי G עם 8 קדקדים שמקיים את הנתונים בשאלה. יהי G גרף עם שני רכיבי קשירות שכל אחד מהם איזומורפי ל - 4 K. אז G מישורי ועבור כל קבוצה של 3 קדקדים יש לפחות 2 מהם ששייכים לאותו רכיב קשירות K 4 ולכן הם שכנים. זיווגים בגרפים הגדרה: יהי (E G = V) גרף לא מכוון. זיווג ב- G הוא אוסף M של צלעות כך שלכל שתיים מהן אין קדקד משותף. הזיווג M נקרא מושלם אם כל קדקדי הגרף משתתפים בזיווג. עבור 2 קדקדים u} {v M נאמר שהם מזווגים על ידי הזיווג M. עבור S V נסמן Γ(S) את קבוצת השכנים של הקדקדים ב- S. משפט :Hall בגרף דו צדדי E) G = (V 1 V 2 בו מתקיים V 1 = V 2 יש זיווג מושלם אם ורק אם לכל קבוצה. Γ(S) S מתקיים S V 1 שאלה 5: מחלקים חפיסת קלפים רגילה ל- 13 קבוצות בנות 4 קלפים כל אחת. הוכח שניתן לבחור קלף בודד מכל קבוצה כך שנבחרו כל סוגי הקלפים האפשריים ) 23...נסיך מלכה מלך ואס(.
5 הוכחה: נקרא ל- 13 הקבוצות שנבנו.A 1 A 2 A 13 לצורך הנוחות נקרא לכל אחד מסוגי הקלפים במספר בין 1 ל- 13. נגדיר גרף G בעל 26 קדקדים כאשר לכל סוג קלף מתאים קדקד וכן לכל אחת מ- 13 הקבוצות מתאים קדקד. נעביר צלע בין הקדקד שמתאים ל A i לקדקד שמתאים לקלף ה- j אם הקלף j נמצא בקבוצה.A i קיבלנו כי G גרף דו צדדי. תהי קבוצה } 13 S {A 1 A 2 A נניח שב- S יש k קבוצות )קדקדים( ולכן יש בה 4k קלפים. לכן יש בה לפחות 4/4k = k סוגי קלפים. בפרט מספר השכנים של S בגרף שהגדרנו הוא לפחות k. לכן ממשפט Hall בגרף יש זיווג מושלם. מהקבוצה A i נבחר את הקלף שמתאים לקדקד שזווג לה בזיווג המושלם. מכך שקיימת ביניהם צלע קלף זה אכן שייך ל A. i מכיוון שכל קלף מזווג נקבל שכל הקלפים נבחרו כנדרש. שאלה 6 יהי (E G = V) גרף דו חלקי כאשר V. = X Y הוכיחו כי קיים ב- G זיווג מושלם אם"ם לכל קבוצה A V מתקיים ש ( Γ(A A )שימו לב כי A V ולאו דווקא.)A X הוכחה: : נניח כי קיים בגרף זיווג מושלם ונניח בשלילה כי קיימת A V כך ש Γ(A) A. > מכך שקיים זיווג מושלם בגרף הדו-צדדי נוכל להסיק כי Y X. = נתבונן בחלקי A שבשני צדי הגרף ונקבל A X + A Y = A > Γ(A) = Γ(A X) + Γ(A Y) ולכן X) A X > Γ(A או ש Y). A Y > Γ(A לפי משפט Hall אין בגרף זיווג מושלם בסתירה. : נניח כי לכל קבוצה A V מתקיים ש Γ(A). A בפרט עבור A = X מתקיים Y X Γ(X) וגם עבור A = Y מתקיים: X Y Γ(Y). לכן Y. X = בנוסף מההנחה בפרט לכל קבוצה A X מתקיים ש Γ(A) A. לכן לפי משפט Hall יש בגרף זיווג מושלם. עצים מתוייגים משפט :)Cayley( מספר העצים המתוייגים מעל n הקדקדים {n 12 }הוא 2 n n. דרך אחרת: מספר העצים הפורשים של הגרף השלם המתוייג K n הוא 2 n n. קוד פרופר :)Prufer( התאמה בין קבוצת העצים המתוייגים מעל n קדקדים לבין אוסף הווקטורים באורך 2 n המורכבים ממספרים טבעיים בין 1 לבין n באופן שמהווה מעין קידוד של המידע הדרוש כדי ליצור את הגרף.
6 שאלה 8: א. מהו קוד Prufer שמתאים לעץ המתויג הבא: ב. שחזרו את העץ המתויג מקוד Prufer הבא: (55511) א. נתאר את שלבי בניית הקוד כשבכל פעם נסיר את העלה בעל הערך המינימלי ונוסיף את שכנו בעץ לסדרה. :3 :1 (622 ) (6 ) :4 :2 (6222 ) :5 (62 ) (62226 )
7 ב. נשחזר את העץ מהקוד הנתון. נתחזק קבוצת קדקדים A שתייצג את הקדקדים שטרם טופלו וסדרת קדקדים B שתייצג את הקוד. בכל שלב נוסיף צלע בין הקדקד בעל הערך המינימלי מ- A שאינו מופיע ב- B והקדקד הראשון ב- B ונסיר את שני הקדקדים מ- A ו- B בהתאמה. A = { } B = (55511) :4 בשלב ההתחלתי: :1 A = {134567} B = (5511) A = {167} B = (1) :2 :5 A = {14567} B = (511) :3 A = {17} B = () :6 A = {1567} B = (11) הערה: נבחין כי העצים בסעיפים א' ו- ב' אינם זהים אולם הם איזומורפיים.
8 שאלה 9: מהו מספר העצים המתוייגים מעל n הקדקדים {n 12} אשר מכילים את הצלע {12} = e? נסמן ב X את כמות העצים המתוייגים שמכילים את הצלע הנתונה e. נבחין כי מספר העצים שמכילים את הצלע e שווה למספר העצים שמכילים צלע מסוימת אחרת כלשהי e. נספור את כמות העצים שמכילים צלע מסוימת כלשהי על פני כל הצלעות האפשריות: כלומר נספור את כמות הזוגות הסדורים (e T) כאשר T עץ ו- )e e T צלע בעץ T(. מספר האפשרויות לבחור צלע מסוימת הוא ) n) ומספר העצים שמכילים צלע מסוימת הוא X לכן בסה "כ כמות העצים שמכילים צלע נתונה כלשהי היא ( n. 2 2 ) X ידוע לנו ממשפט Cayley שמספר העצים המתויגים הוא 2 n n ובכל עץ כזה יש בדיוק 1 n צלעות לכן בסה"כ כמות העצים שמכילים צלע נתונה כלשהי היא 2 n n). (1 n קיבלנו את השוויון ( n ) X = (n 1) nn 2 2 כלומר n 3.X = 2 n שאלה 10: כמה עצים מתוייגים יש מעל הקדקדים {n 1} בהם קבוצת הקדקדים הפנימיים היא בדיוק?{1 k} נניח בשלילה ש- 1 n k = אז מתוך n קדקדים רק אחד עלה. סתירה. נשים לב כי בהכרח 1 n k < כי בעץ יש לפחות שני עלים. אבחנה: קדקד הוא פנימי )לא עלה( בעץ אם ורק אם הוא מופיע בקוד פרופר של העץ. לכן נספור כמה קודי פרופר שונים ישנם )מאורך 2 n( מעל {k 1} המכילים לפחות פעם אחת כל אחד מהמספרים k.1 נשתמש בעקרון ההכלה וההדחה: נגדיר: - S קבוצת כל הסדרות מאורך 2 n מעל k}.{1 לכל i k 1 נגדיר: - A i קבוצת כל הסדרות מאורך 2 n מעל k} {1 שלא מכילות את המספר.i n 2 S = k n 2 i = (k 1) ולכל i מתקיים A וכן גודל חיתוך של j קבוצות כלשהן הוא קל לראות ש- n 2.(k j) לכן התשובה היא S \ k i=1 k A i = ( 1) j ( k ) (k j)n 2 j j=0
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:
קרא עודתרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra
תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות
קרא עודMicrosoft Word - ExamA_Final_Solution.docx
סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד
קרא עודAlgorithms Tirgul 1
- מעגלי אוילר ומסלולי אוילר תרגול 1 חידה: האם אפשר לצייר את הציורים הבאים בלי להרים את העיפרון מהנייר? 1 קצת אדמיניסטרציה אופיר פרידלר ophir.friedler@gmail.com אילן כהן - ilanrcohen@gmail.com שעות קבלה
קרא עודמועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו
מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות
קרא עודMicrosoft Word - עבודת פסח לכיתה י 5 יחל.doc
עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים
קרא עוד<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>
1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $
קרא עודע 003 מרץ 10 מועד מיוחד פתרונות עפר
בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר
קרא עודאוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'
אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט
קרא עודMicrosoft Word - SDAROT 806 PITRONOT.doc
5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את
קרא עודחשבון אינפיניטסימלי מתקדם 1
חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי
קרא עודתשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,
קרא עודתרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L
תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,
קרא עודהטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור
תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(
קרא עודMicrosoft Word - solutions.doc
תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה
קרא עוד<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>
האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע
קרא עודתכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0
22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור
קרא עודMicrosoft Word - 38
08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60
קרא עודתכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה
תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר
קרא עודאנליזה מתקדמת
א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:
קרא עוד2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק
דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור
קרא עודHaredimZ2.indb
יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.
קרא עודפתרונות לדף מס' 5
X הוכיחו כי קבוצה X סגורה אמ"מ פתוחה P נקודה כלשהי עלינו למצוא כך ש- X P X פתרון: תהא X קבוצה סגורה ניקח נניח בשלילה כי לא קיים כזה, ז"א לכל קיימת כך ש- X מכיוון ש- P P נסיק כי d P, P סגורה מתקיים P B
קרא עודסז 002 נואר 07 מועד חורף פתרונות עפר
הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות
קרא עודבגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,
,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא
קרא עודתרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה
תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה מקבילית שצלעותיה שוות ל- 3 ס"מ ול- 7 ס"מ. מהו הטווח
קרא עודמקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי
מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא
קרא עודסדרה חשבונית והנדסית
.2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.
קרא עודMicrosoft Word - Sol_Moedb10-1-2,4
הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל
קרא עודMicrosoft Word - hedva 806-pitronot-2011.doc
ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על
קרא עודתורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב
תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,
קרא עודMicrosoft Word - tutorial Dynamic Programming _Jun_-05.doc
הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,
קרא עודMicrosoft Word - dvar hamaarehet_4.8.docx
מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם
קרא עודתרגול 1
תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת
קרא עודא. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף
א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון
קרא עודעב 001 ינואר 12 מועד חורף פתרונות עפר
ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית
קרא עודעבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות
עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו
קרא עודMicrosoft Word - אלגברה מעורב 2.doc
תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz
קרא עודפסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -
פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים
קרא עודאי שוויונים ממעלה ראשונה לארבע יחידות
אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.
קרא עודמבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות
מבוא לאנליזה נומרית na191 Assignmnt 2 solution - Finding Roots of Nonlinar Equations y cos() שאלה 1 היכן נחתכים הגרפים של? y 3 1 ושל ממש פתרונות בעזרת שיטת החצייה ובעזרת Rgula Falsi )אין צורך לפתור אנליטית(
קרא עודטיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ
טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.
קרא עודתאריך הבחינה 30
אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א
קרא עוד1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C
8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות
קרא עודתיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות
תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...
קרא עודסט נובמבר 08 מועד מיוחד - פתרונות עפר.doc
נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y
קרא עודLimit
פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:
קרא עודמטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו
מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה
קרא עודrizufim answers
ÌÈÙÂˆÈ מדריך למורה פעילות זו היא פעילות חקר לבדיקת כל אפשרויות הריצוף שבהן סידור מצולעים סביב קודקוד הוא זהה. המצולעים שבהם ישתמשו התלמידים הם: משולש שווה צלעות, משושה משוכלל וריבוע - כולם בעלי צלע באותו
קרא עודא"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)
א"ודח ב גרבימ הרש רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא בחרמב ינש גוסמ יוק לרגטניא יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע ttt t r רשאכ ttt :עטקב תופיצר תורזגנ תולעב [ab]. יהי F תופיצר תורזגנ
קרא עודפתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו
פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו
קרא עודפסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:
עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30
קרא עודשאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ
שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם
קרא עודMicrosoft Word - 01 difernziali razionalit
פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות
קרא עודמבוא ללוגיקה ולתורת הקבוצות
תורת הקבוצות מושגים בסיסיים מבוא ללוגיקה ולתורת הקבוצות חוברת תרגילים כתוב באופן מפורש את הקבוצות הבאות: 5 2x + 3< היא קבוצת המספרים השלמים המקיימים : 7 B היא קבוצת האותיות הקודמות לאות f באלף-בית הלטיני.
קרא עודáñéñ åîéîã (ñéåí)
מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא
קרא עוד. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים
שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4
קרא עודתכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח
תכנות דינמי פרק 6, סעיפים -6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח בסוף את הטוב ביותר. סכום חלקי sum) (subset הקלט: סדרה
קרא עוד<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>
הסברים לפרק כמותי : :úåðåëðä úåáåùúä 0 9 8 7 6 5 5 0 9 8 7 6 5. התשובה הנכונה היא: (). עלינו לקבוע איזה מהביטויים שבתשובות אינו זוגי. משום שהשאלה עוסקת בתכונת הזוגיות, ננסה ללמוד מהנתון על זוגיותם של x
קרא עודMicrosoft Word - ex04ans.docx
1 אריאל סטולרמן סטטיסטיקה / תרגיל #4 קבוצה 03 Φ2. ההתפלגות הנורמלית (1) Φ2.2. Φ2.22. Φ1.5 1Φ1.5. Φ0. Φ5 1Φ5 1Φ4.417. Φ 1Φ 1Φ4.417. נתון: ~ 0,1 ( a )להלן חישוב ההסתברויות: 2.22 1.55 Φ1.55 Φ2.22 Φ1.55 1Φ2.22
קרא עודתוצאות סופיות מבחן אלק' פיקוד ובקרה קיץ 2014
תוצאות סופיות למערכות אלק' פיקוד ובקרה להנדסאים וטכנאים מועד קיץ תשע"ד 7/2014 פותר המבחן: מתי דוד למרות מאמצי לפתור נכון, יתכן ונפלו טעויות בפתרון, אשמח לקבל הערותיכם בדוא"ל : @hotmail.com ההצלחה שלי היא
קרא עודמתמטיקה של מערכות
מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות
קרא עודðñôç 005 î
ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,
קרא עודמבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב
מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180
קרא עודמבוא למדעי המחשב
מבוא כללי לתכנות ולמדעי המחשב 1843-0310 מרצה: אמיר רובינשטיין מתרגל: דין שמואל אוניברסיטת תל אביב סמסטר חורף 2017-8 חלק ב - מבוא לקריפטוגרפיה שיעור 5 (offset מונחים בסיסיים צופן קיסר (היסט,.1.2 1 Today
קרא עודחלק א' – הקדמה
ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי
קרא עודיחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר
יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את
קרא עודMicrosoft Word - 14
9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את
קרא עודמבוא למדעי המחשב
מבוא למדעי המחשב גרפים 1 תוכן עניינים סיכום ביניים מה היה לנו? מושג האלגוריתם, תכנות פרוצדורלי הכרות עם בעיות במדעי המחשב הכרות עם בעיות ברקורסיה מתקדמת (כולל (memoization תכנות מונחה עצמים (מחלקה, הורשה,
קרא עודMicrosoft Word - 28
8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת
קרא עוד67865 כלים מתמטיים 7 בינואר 2014 מרצה: מיכאל בן אור מתרגל: צור לוריא איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום
67865 כלים מתמטיים 7 בינואר 2014 מרצה: מיכאל בן אור מתרגל: צור לוריא איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom אהבתם?
קרא עודמצגת של PowerPoint
שלום לתלמידי י"א חמש יחידות מתמטיקה גיל קרסיק מורה למתמטיקה בשעה וחצי הקרובות נדבר על שאלון 806 סדרות הנדסיות וחשבוניות ארבעה תרגילים שהיו בבחינות בגרות ארבעה טיפים )טיפ אחד אחרי כל תרגיל שנפתור הערב(
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
5 עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי 5
קרא עודע 001 ינואר 10 מועד חורף פתרונות עפר
בגרות ע 00 ינואר 0 שאלון 50 הציר האופקי, ציר ה-, x מתאר את הזמן שעובר, בשניות, מתחילת השחייה כל משבצת היא בת 0 שניות הציר האנכי, ציר ה - y, מתאר את המרחק מקצה הבר כה כל משבצת היא בת 0 מטר כאשר הקו עולה
קרא עוד<4D F736F F D20F9E9F2E5F820F1E9EEF0E920E7ECE5F7E4>
ניב רווח פסיכומטרי 1 שיעור מבוא נושא סימני החלוקה כולל מספר מושגים שצריך להכיר כמו חלוקה לגורמים או שארית של חלוקה. בבחינה יכולות להופיע שאלות שיעסקו בנושא זה כנושא בפני עצמו, ולעתים הידע בנושא דרוש לפתרון
קרא עודשיטות הסתברותיות ואלגוריתמים חוברת התרגילים 25 באוקטובר 2015 חוברת זו מכילה תרגילים נבחרים מהיסטוריית הקורס ופתרונם. בשעות האימון יוצג מבחר מהתרגילים
שיטות הסתברותיות ואלגוריתמים חוברת התרגילים 5 באוקטובר 05 חוברת זו מכילה תרגילים נבחרים מהיסטוריית הקורס ופתרונם. בשעות האימון יוצג מבחר מהתרגילים בחוברת. מרחק בין התפלגויות קרבה בין התפלגויות עבור שתי
קרא עודmivhanim 002 horef 2012
מבחן מספר 1 (שאלון 00 חורף תשע"ב) בשאלון זה שש שאלות. תשובה מלאה לשאלה מזכה ב- 5 נקודות. מותר לך לענות, באופן מלא או חלקי, על מספר שאלות כרצונך, אך סך הנקודות שתוכל לצבור לא יעלה על. 100 אלגברה (x+ 5)
קרא עודSlide 1
גישת ההעדפה הנגלית נושאי השיעור העדפה נגלית הפן התיאורטי הפן המעשי סטאטיקה השוואתית מדדי כמויות מיסים עקיפים לעומת מיסי גולגולת מדדי מחירים הקשרים בין המדדים השונים 2 הפן התיאורטי אנו צופים בסלים אותם
קרא עודתאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה
תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב
קרא עודמתמטיקה לכיתה ט פונקציה ריבועית
מתמטיקה לכיתה ט פונקציה ריבועית צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת
קרא עודמבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4
מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19
קרא עוד! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y
!! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) tan ( a a z 0 a z s ds dt (רמז: cos d d ז) d ( ) d ( ) ח) ) מצא את הפתרונות המקיימי :. () 0 ( ). (). () 0 d ( ) d ( ) π. sin ln ) tan cos d cos d
קרא עודמעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשע"ב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו
נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים וסלילים )משרנים(. ראשית נראה כיצד משפיע כל אחד מהרכיבים הללו על המתח במעגל. נגד חוק אוהם: במהלך לימודיכם
קרא עודMicrosoft Word - Questions Booklet Spring 2009
אלגוריתמים 1 חוברת תרגילים נא לשלוח כל הערה לגיל כהן במייל cohen@cs.technion.ac.il מפתח שאלות לפי נושאים 1, 45, 54, 55, 56, 76 5, 63 :BFS :DFS מיון טופולוגי: 17, 31, 32, 57, 67, 68 2, 25, 26, 28, 50 21,
קרא עודתרגיל 5-1
תרגיל 1 יחסי העדפה, פונקציות תועלת, עקומות אדישות וקווי תקציב כל השאלות להלן מתייחסות לצרכן שהעדפותיו מוגדרות על סלי צריכה של שני מוצרים. העדפות אלה הן רציונאליות (ז"א, מקיימות את תכונות השלמות והטרנזיטיביות).
קרא עודפונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי
המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה
קרא עודמספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי
מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל
קרא עודבחינה מספר 1
תוכן העניינים בחינה מספר 1 4 אלגברה: 4 חשבון דיפרנציאלי ואינטגרלי: בחינה מספר 6 אלגברה: 6 חשבון דיפרנציאלי ואינטגרלי: 7 בחינה מספר 3 8 אלגברה: 8 חשבון דיפרנציאלי ואינטגרלי: 9 בחינה מספר 41 אלגברה: 01 חשבון
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה - יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. התייחסות רצינית להכנת העבודה היא תנאי
קרא עודרגשי משחק קלפים לפיתוח תקשורת רגשית ואמפתיה לזולת מטרות המשחק: להעלות את המודעות למגוון הרגשות הקיימים בנו ולתת להם ביטוי להבין כי כל אירוע מעורר קשת
רגשי משחק קלפים לפיתוח תקשורת רגשית ואמפתיה לזולת מטרות המשחק: להעלות את המודעות למגוון הרגשות הקיימים בנו ולתת להם ביטוי להבין כי כל אירוע מעורר קשת רחבה של רגשות לעודד שיח ולהמשיג רגשות לתת למדריך בסיס
קרא עודתרגול מס' 1
תרגול 6 הסתעפויות 1 מבוסס על שקפים מאת יאן ציטרין קפיצות לא מותנות Unconditional Branch br label PC לאחר ה- fetch של פקודת ה- branch PC לאחר הביצוע של פקודת ה- branch pc label br label הקפיצה מתבצעת תמיד,
קרא עוד<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>
< 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות
קרא עודשם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים כיתה
שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים www.kefwithjeff.org כיתה Happy New Year 8 0 80 80 0 8 8 8 8 8 08 8 0 0 בכל שורה ובכל טור יש את המספרים עד כולל.
קרא עודפרויקט "רמזור" של קרן אביטל בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו
בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנושא הפונקציות הנלמד בכתה ט' בכל הרמות. עזרי ההוראה בהם נשתמש: מחשב, ברקו, דפי עבודה
קרא עודעבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י
עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע
קרא עודפתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0
פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות
קרא עודîáçï îúëåðú îñ' 1
5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä
קרא עודתוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום
תוכן העניינים: פרק 2 3 צמצומים ומימושים של פונקציות בוליאניות 2 צמצומים של פונקציות באמצעות מפת קרנו: 2 שאלות: 2 תשובות סופיות: 4 צמצום באמצעות שיטת 6:QM שאלות: 6 תשובות סופיות: 7 מימושים בעזרת פונקציות
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי יחידות
קרא עוד