מקביליות

גודל: px
התחל להופיע מהדף:

Download "מקביליות"

תמליל

1 תכונות שמורה Invariant Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון

2 2 בדיקות מודל Checking( )Model מערכת דרישות מידול פירמול בדיקות מודל )Model Checking( מודל של המערכת תכונות פורמליות סימולציה דוגמה נגדית התכונות הוכחה

3 3 תזכורת: מריצות לתכונות s 0 ריצה! s1! s2! s 0 s 1 s 2 מסלול ) 2 L(s 0 )L(s 1 )L(s עקבות שפה פורמאלית מעל האלף-בית 2 AP תכונה

4 4 )semaphore( דוגמה רצה: מניעה הדדית מבוססת סמפור noncrit 1 noncrit 2 y = y + 1 wait 1 y = y + 1 wait 2 y > 0 y = y 1 y > 0 y = y 1 crit 1 crit 2 מסמל "המנעול בשימוש" מסמל ו = 1 y "המנעול חופשי" y = 0

5 5 מערכת המעברים ) 2 TS(PG 1 PG hn 1, n 2, y=1i hw 1, n 2, y=1i hn 1, w 2, y=1i hc 1, n 2, y=0i hw 1, w 2, y=1i hn 1, c 2, y=0i hc 1, w 2, y=0i hw 1, c 2, y=0i

6 6 תכונות זמן ליניארי Linear Time Properties הגדרה: תכונת זמן ליניארי P היא תת קבוצה של P 2 AP ω להשאיר - העקבות שהתוכנית עלולה התכונה מתארת מהן עקבות שגיאה בתוכנית "חוקיות" מבחינתנו ואילו עקבות נחשבות אנחנו מכוונים ללוגיקה שבה ניתן יהיה לתאר התנהגויות חוקיות של מערכות ושאפשר לבקש, למשל מ- SPIN, לבדוק אם מערכת מעברים נתונה מקיימת תכונה רצויה מערכת מקיימת תכונה אם כל העקבות שהיא עלולה להשאיר הן חוקיות נראה דרכים שונות לתאר תכונות

7 7 הסימונים TS P ו- s P נסמן ע"י TS P את העובדה שמערכת המעברים TS מקיימת את תכונת הזמן הליניארי P: Traces TS P אם ורק אם TS P באופן דומה, נסמן ב s S את העובדה שכל הריצות המתחילות במצב P: מקיימות את תכונת הזמן הליניארי s S Traces s P אם ורק אם s P

8 8 דוגמה: רמזורים מסונכרנים {red 1 } {green 2 } {red 1, green 2 } red 1 green 2 red, green green 1 red 2 {green 1 } {red 2 } green, red {green 1, red 2 } "הרמזור הראשון יהיה ירוק אינסוף פעמים" = P 2 AP כך ש green 1 A i עבור אינסוף i םי-. {red 1, green 2 }{green 1, red 2 }{red 1, green 2 }{green 1, red 2 } green green 1 1 green 1 green 1 {red 1, green 1 } {red 1, green 1 } {red 1, green 1 } {green 1, green 2 } {green 1, green 2 }{green 1, green 2 } כל המילים האינסופיות מהצורה 3 A 1 A 2 A מעל למשל, P מכילה את המילים:

9 9 דוגמה: רמזורים מסונכרנים {red 1 } {green 2 } {red 1, green 2 } red 1 green 2 red, green green 1 red 2 {green 1 } {red 2 } green, red {green 1, red 2 } "אף פעם לא מדליקים אור ירוק בשני הרמזורים ביחד" = P green 2 A i green 1 A i,i כל המילים האינסופיות מהצורה 3 A 1 A 2 A מעל 2 AP למשל, P מכילה את המילים: כך שלכל או red 1, green 2 green 1, red 2 red 1, green 2 green 1, red 2... green 1 green 1 green 1 green 1 {red 1, green 1 } {red 1, green 1 } {red 1, green 1 }

10 10 איך נגדיר מניעה הדדית? "תמיד נמצא לכל היותר אחד מהתהליכים בקטע הקריטי" נניח } 2 AP = {crit 1, crit הפסוקים האטומיים האחרים אינם רלוונטיים לתכונה הזאת תאור כתכונת זמן ליניארי: P mutex = A 0 A 1 crit 1, crit 2 A i for all i דוגמאות למילים אינסופיות ב- P: mutex crit 1 crit 2 ω crit 1 crit 1 ω דוגמאות למילים אינסופיות שאינן ב- P: mutex crit 1 crit 1, crit 2 ω crit 1, crit 2 crit 1, crit 2 ω

11 11? האם האלגוריתם שהצגנו מקיים P mutex hn 1, n 2, y=1i hw 1, n 2, y=1i hn 1, w 2, y=1i hc 1, n 2, y=0i {crit 1 } hw 1, w 2, y=1i hn 1, c 2, y=0i {crit 2 } hc 1, w 2, y=0i {crit 1 } hw 1, c 2, y=0i {crit 2 } crit 1 כן, מכיוון שאין מצב נגיש המכיל גם את וגם את crit 2

12 12 איך נגדיר מניעת הרעבה? "תהליך הרוצה להיכנס לקטע הקריטי ייכנס בסופו של דבר" נגדיר } 2 AP = {wait 1, crit 1, wait 2, crit כתיבה כתכונת זמן ליניארי: P nostarve = {A 0 A 1 j. wait i A j ( j. crit i A j ) for each i = 1,2} סימון: "קיימים אינסוף אינדקסים כך ש..." j. wait i A j ( k > 0. j > k. wait i A j )? האם האלגוריתם מקיים את התכונה P nostarve

13 13 איך נגדיר מניעת הרעבה? "תהליך הרוצה להיכנס לקטע הקריטי ייכנס בסופו של דבר" נגדיר } 2 AP = {wait 1, crit 1, wait 2, crit כתיבה כתכונת זמן ליניארי: P nostarve = A 0 A 1 j. wait 1 A j j. crit 1 A j A 0 A 1 j. wait 2 A j j. crit 2 A j סימון: "קיימים אינסוף אינדקסים כך ש..." j. wait 1 A j ( k > 0. j > k. wait 1 A j )? האם האלגוריתם מקיים את התכונה P nostarve

14 14 האם האלגוריתם מבטיח חוסר הרעבה? hn 1, n 2, y=1i hw 1, n 2, y=1i {wait 1 } hn 1, w 2, y=1i {wait 2 } hc 1, n 2, y=0i {crit 1 } hw 1, w 2, y=1i {wait 1, wait 2 } hn 1, c 2, y=0i {crit 2 } hc 1, w 2, y=0i {crit 1, wait 2 } hw 1, c 2, y=0i {wait 1, crit 2 } לא: wait 2 wait 1, wait 2 crit 1, wait 2 ω Traces TS P nostarve

15 15 עידון דרישות ושקילות עקבות כשבונים מערכת: במהלך הפיתוח מתחילים בהגדרת דרישות כלליות ומפרטים את הדרישות מבחינה פורמאלית: מתחילים במודל המגדיר ריצות ומעדנים אותו ככל שמבינים יותר איך המערכת צריכה לפעול עד שמגיעים למימוש מתמטית: ) H Traces TS L Traces(TS י ת רו נו ת של הגישה הפורמאלית: אפשר לבדוק תכונות בכל שלב של הפיתוח אפשר לוודא שהמימוש הוא עידון של הדרישות אפשר לוודא, מול הלקוח, כבר בשלב מוקדם, שהדרישות הובנו

16 16 דוגמה: אלגוריתם מניעה הדדית hn 1, n 2, y=1i hw 1, n 2, y=1i hn 1, w 2, y=1i hc 1, n 2, y=0i hw 1, w 2, y=1i hn 1, c 2, y=0i hc 1, w 2, y=0i hw 1, c 2, y=0i האלגוריתם מקיים את התכונה P mutex

17 17 דוגמה: עידון אלגוריתם המניעה ההדדית hn 1, n 2, y=1i hw 1, n 2, y=1i hn 1, w 2, y=1i hc 1, n 2, y=0i hw 1, w 2, y=1i hn 1, c 2, y=0i hc 1, w 2, y=0i hw 1, c 2, y=0i P mutex לא צריך לבדוק: גם הגרסה הזאת )הורדנו קשת( מקיימת את התכונה

18 18 שקילות עקבות ותכונות זמן ליניארי TS עבור מערכות מצבים TS ו בלי מצבים ללא מוצא: Traces TS Traces(TS ) אם ורק אם TS P TS P לכל תכונת זמן ליניארי P אם מתקיים: אז Traces(TS) = Traces(TS ) אם ורק אם TS ו TS מקיימות את אותן תכונות זמן ליניארי

19 19 דוגמה: שתי מכונות שתייה pay pay sprite select beer select 1 sprite beer select 2 AP = { pay, sprite, beer } אין תכונת זמן ליניארי שיכולה להבדיל בין שתי המכונות האלה

20 20 תכונות בטיחות properties( )safety תכונות בטיחות properties( )safety ¼ "שום דבר רע לא יקרה" תכונת בטיחות אופיינית: מתהליך אחד בקטע הקריטי( תכונת המניעה ה ה ד ד ית לעולם לא קורה )יותר הרע הדבר )deadlock( דוגמה טיפוסית נוספת: הימנעות מק פ או ן שתי התכונות האלה הן שמורות )invariants( נתון תנאי φ למצבים דורשים ש φ יתקיים לכל מצב נגיש φ crit 1 crit 2 דוגמה: עבור תכונת המניעה ההדדית דוגמה: תכונת הק פ או ן של הפילוסופים הסועדים φ wait 0 wait 1 wait 2 wait 3 wait 4

21 21 תכונות ש מ ור ה )invariants( תכונת זמן ליניארי P inv היא ש מ ור ה אם קיימת נוסחה φ כך ש- P inv = { A 0 A 1 j 0. A j φ } )invariant condition( נקרא תנאי השמורה φ TS P inv אם ורק אם TS של π לכל מסלול trace π P inv TS לכל מצב s L s השייך למסלול של φ s Reach(TS) לכל מצב L s φ חייב להתקיים בכל מצב התחלתי, נכונות φ נשמרת תחת כל מעבר )בתחום הנגיש( אינדוקציה: φ

22 22 בדיקת שמורות בדיקת שמורה עבור פסוק = φ האם התכונה מתקיימת בכל מצב נגיש? שימוש בגרסה של אלגוריתם סריקת גרף BFS( או )DFS בהנחה שמערכת המעברים סופית ביצוע חיפוש DFS אם מצאנו מצב s קדימה מסיקים ש φ אינו שמורה כך ש s φ אפשרות אחרת: חיפוש אחורה מתחילים מהמצבים בהם φ אינה מתקיימת )φ s( מחשבים את המצבים הקודמים (s) Pre באמצעות DFS או BFS אם הגענו למצב התחלתי ) s I( Pre מסיקים ש φ אינה שמורה

23 23 בדיקת שמורה באמצעות DFS קלט: פלט: מערכת מעברים סופית TS ונוסחה Á Á", מקיימת את השמורה "תמיד TS אם true אחרת false *( קבוצת המצבים בהם ביקרנו )* ;; := R set of states *( מחסנית מצבים "לטיפול" )* ²; := U stack of states *( כל המצבים ב R מקיימים את boolean b := true; )* Á for all s 2 I do od if s R then fi )* מתחילים DFS מכל מצב התחלתי *( visit(s)

24 24 בדיקת שמורה באמצעות DFS procedure visit(state s) )* פרוצדורה לביקור במצב *( push(s, U); )* דוחפים את המצב למחסנית *( R := R [ {s}; )* ומוסיפים אותו לקבוצת המצבים שכבר ביקרנו *( repeat s := top(u); if Post(s ) µ R then pop(u); *( בודקים אם s מקיימת את b := b Æ (s ² Á); )* Á else take s 2 Post(s ) n R; push(s, U); *( גילינו מצב נגיש חדש s R := R [ {s }; )* fi until ((U = ²) Ç :b) endproc

25 25 זמן סיבוכיות נניח שניתן למצוא s Post(s) בזמן θ( Post(s) ) הנחה תקפה כאשר מייצגים את Post(s) ע"י רשימות סמיכות )adjacency lists( TS סיבוכיות זמן בדיקת שמורה: O(N φ + M) N מסמל את מספר המצבים הנגישים Post(s) M = s S מסמל את מספר המעברים בחלק הנגיש של בדרך כלל לא מייצגים את רשימות הסמיכות באופן מפורש למשל: ניתן להשתמש בתיאור סינטקטי של התהליכים המקביליים כגרפי תוכנית Post(s) מתקבל מהכללים של יחס המעברים

26 26 אלגוריתם שנותן גם דוגמה נגדית *( קבוצת המצבים בהם ביקרנו )* ;; := R set of states *( מחסנית מצבים "לטיפול" )* ²; := U stack of states boolean b := true; )* כל המצבים ב R מקיימים את Á *( while (I R b ) do let s I R visit(s) od if b then return yes Else return no, reverse(u) Fi

מקביליות

מקביליות תכונות בטיחות Safety Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון 2 תזכורת: תכונות זמן ליניארי Linear Time Properties תכונות זמן-ליניארי מתארות קבוצת עקבות שהמערכת צריכה לייצר מכוונים ללוגיקה

קרא עוד

מקביליות

מקביליות PROMELA גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון עדכון אחרון: 21:40 15/06/2013 2 שפת מ פ ר ט עם ס מ נ ט יק ה מוגדרת באופן מתמטי "שפת תכנות" למודלים המטרה: לאפשר גם לכאלה שאינם חוקרים בתחום לבנות

קרא עוד

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,

קרא עוד

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0 22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

שיעור 1

שיעור 1 שיעור קצב גדילת פונקציות אנחנו בודקים את היעילות האסימפטותית של האלגוריתם, כיצד גדל זמן הריצה כאשר גודל הקלט גדל ללא גבול. בדר"כ אלגוריתמים עם "סיבוכיות" ריצה טובה יותר יהיו יעילים יותר מלבד לקלטים קצרים

קרא עוד

מבחן 7002 פרטים כלליים מועד הבחינה: בכל זמן מספר השאלון: 1 משך הבחינה: 3 שעות חומר עזר בשימוש: הכל )ספרים ומחברות( המלצות: קרא המלצות לפני הבחינה ובדי

מבחן 7002 פרטים כלליים מועד הבחינה: בכל זמן מספר השאלון: 1 משך הבחינה: 3 שעות חומר עזר בשימוש: הכל )ספרים ומחברות( המלצות: קרא המלצות לפני הבחינה ובדי מבחן 7002 פרטים כלליים מועד הבחינה: בכל זמן מספר השאלון: 1 משך הבחינה: 3 שעות חומר עזר בשימוש: הכל )ספרים ומחברות( המלצות: קרא המלצות לפני הבחינה ובדיקות אחרונות לפני מסירה )עמודים 8-11( מבנה השאלון 5

קרא עוד

תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח

תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח תכנות דינמי פרק 6, סעיפים -6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח בסוף את הטוב ביותר. סכום חלקי sum) (subset הקלט: סדרה

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא למדעי המחשב גרפים 1 תוכן עניינים סיכום ביניים מה היה לנו? מושג האלגוריתם, תכנות פרוצדורלי הכרות עם בעיות במדעי המחשב הכרות עם בעיות ברקורסיה מתקדמת (כולל (memoization תכנות מונחה עצמים (מחלקה, הורשה,

קרא עוד

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו אב תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא למדעי המחשב שימוש במחסנית - מחשבון תוכן עניינים prefix כתיבת ביטויים ב-,infix ו- postfix postfix prefix,infix ביטויים ב- כתיבת ו- infix נוסח כתיבה ב- (operator אנו רגילים לכתוב ביטויים חשבוניים כדוגמת

קרא עוד

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם

אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשעג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג,.6.013 משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם 8 עמודי שאלון )כולל עמוד זה(. עליכם לכתוב את התשובות על

קרא עוד

בחן במערכות הפעלה

בחן במערכות הפעלה אוניברסיטת בן-גוריון בנגב, המחלקה למדעי המחשב בוחן אמצע במערכות הפעלה מרצים: איתי דינור, דני הנדלר ורוברט יעקבשוילי. מתרגלים: אור דינרי, אחמד דרובי, מתן דרורי, צחי ספורטה, רועי עוזיאל ואריאל תלמי. ענו

קרא עוד

שעור 6

שעור 6 שעור 6 Open addressing אין רשימות מקושרות. (נניח שהאלמנטים מאוחסנים בטבלה עצמה, לחילופין קיים מצביע בהכנסה המתאימה לאלמנט אם אין שרשור). ב- addressing open הטבלה עלולה להימלא ב- factor α load תמיד. במקום

קרא עוד

מהוא לתכנות ב- JAVA מעבדה 3

מהוא לתכנות ב- JAVA מעבדה 3 מבוא לתכנות ב- JAVA מעבדה 3 נושאי התרגול לולאות ניפוי שגיאות לולאות - הקדמה כיצד הייתם כותבים תוכנית שתדפיס את המספרים השלמים בין 1 ל- 100 בעזרת הכלים שלמדתם עד עתה? חייבת להיות דרך אחרת מאשר לכתוב 100

קרא עוד

מבוא לתכנות ב- JAVA תרגול 11

מבוא לתכנות ב- JAVA  תרגול 11 מבוא לתכנות ב- JAVA תרגול 11 רשימה מקושרת אוסף סדור של איברים מאותו טיפוס. קודקוד ברשימה )Node( מכיל את המידע + הצבעה לקודקוד הבא ברשימה data next first רשימה :)List( מיוצגת ע"י מצביע לאיבר הראשון ברשימה

קרא עוד

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות

קרא עוד

Algorithms Tirgul 1

Algorithms Tirgul 1 - מעגלי אוילר ומסלולי אוילר תרגול 1 חידה: האם אפשר לצייר את הציורים הבאים בלי להרים את העיפרון מהנייר? 1 קצת אדמיניסטרציה אופיר פרידלר ophir.friedler@gmail.com אילן כהן - ilanrcohen@gmail.com שעות קבלה

קרא עוד

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180

קרא עוד

אוניברסיטת בן גוריון בנגב תאריך המבחן: שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: מס' הקורס : הנדסת תעשיה וניהול מ

אוניברסיטת בן גוריון בנגב תאריך המבחן: שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: מס' הקורס : הנדסת תעשיה וניהול מ אוניברסיטת בן גוריון בנגב תאריך המבחן: 12.02.17 שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: 202.1.9031 מס' הקורס : הנדסת תעשיה וניהול מיועד לתלמידי : א' מועד א' סמ' שנה תשע"ד 3 שעות משך

קרא עוד

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,

קרא עוד

מבוא לתכנות ב- JAVA תרגול 7

מבוא לתכנות ב- JAVA  תרגול 7 מבוא לתכנות ב- JAVA תרגול 8 תזכורת - מבנה של פונקציה רקורסיבית.2 פונקציה רקורסיבית מורכבת משני חלקים עיקריים 1. תנאי עצירה: מקרה/מקרים פשוטים בהם התוצאה לא מצריכה קריאה רקורסיבית לחישוב צעד רקורסיבי: קריאה

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא למדעי המחשב מחרוזות, חתימה של פונקציה ומעטפות תוכן עניינים טיפוסים מורכבים טיפוסים מורכבים ערך שם טיפוס 12 m int undef. x boolean true y boolean arr int[] כאלה שעשויים להכיל יותר מערך פרימיטיבי אחד

קרא עוד

מבוא ללוגיקה ולתורת הקבוצות

מבוא ללוגיקה ולתורת הקבוצות תורת הקבוצות מושגים בסיסיים מבוא ללוגיקה ולתורת הקבוצות חוברת תרגילים כתוב באופן מפורש את הקבוצות הבאות: 5 2x + 3< היא קבוצת המספרים השלמים המקיימים : 7 B היא קבוצת האותיות הקודמות לאות f באלף-בית הלטיני.

קרא עוד

מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

מטלת מנחה (ממן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה

קרא עוד

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל

קרא עוד

Untitled

Untitled 2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim

קרא עוד

תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה

תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב

קרא עוד

תרגול 1

תרגול 1 מבוא למדעי המחשב 2019 תרגול 12 מחסנית )Stack( memoization ראינו בהרצאה מחסנית Infix/Postfix Notations בתרגול היום מחסנית בדיקת איזון סוגריים בביטוי אריתמטי מימוש תור באמצעות מחסנית memoization דוגמאות

קרא עוד

תרגול 1

תרגול 1 מבוא למדעי המחשב 2019 תרגול 5 מחרוזות, חתימות ורקורסיה מחרוזות רצף של תווים רקורסיה קריאה של מתודה לעצמה באופן ישיר או עקיף ראינו בהרצאה מחרוזות: תווים, חתימות: העמסה- String,הצהרה, overloading אתחול רקורסיה:

קרא עוד

Microsoft Word - Questions Booklet Spring 2009

Microsoft Word - Questions Booklet Spring 2009 אלגוריתמים 1 חוברת תרגילים נא לשלוח כל הערה לגיל כהן במייל cohen@cs.technion.ac.il מפתח שאלות לפי נושאים 1, 45, 54, 55, 56, 76 5, 63 :BFS :DFS מיון טופולוגי: 17, 31, 32, 57, 67, 68 2, 25, 26, 28, 50 21,

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא למדעי המחשב המחלקה Object תוכן עניינים Object הורשה והמחלקה ערך שם טיפוס DynamicIntArray da data size incrementsize DynamicArray תזכורת - Object[] data; int size; int incrementsize; DynamicArray זה

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

ex1-bash

ex1-bash ביה"ס למדעי המחשב סמסטר חורף תשע"ח 13.12.2017 יסודות מערכות פתוחות פתרון תרגיל מס' 7 המכללה האקדמית נתניה שימו לב: כל ההערות שבתחילת תרגילים 1-6 תקפות גם לתרגיל זה. הערה 1: החל מתרגיל זה והלאה, בכל פעם

קרא עוד

Homework Dry 3

Homework Dry 3 Homework Dry 3 Due date: Sunday, 9/06/2013 12:30 noon Teaching assistant in charge: Anastasia Braginsky Important: this semester the Q&A for the exercise will take place at a public forum only. To register

קרא עוד

עיצוב אוניברסלי

עיצוב אוניברסלי איך לסמן חניות נכים תוכן עניינים החוק כמויות חניות לסימון סימון ותמרור חניות נכים רישום חניות נכים ברשות תמונות שרטוטים חוק חניה לנכים חוק חניה לנכים, התשנ"ד 1993 החוק מגדיר: מי זכאי לתו חניית נכים היכן

קרא עוד

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשעח m 2 הוראות לנבחן: )1( הבחינה מו מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות

קרא עוד

הגשה תוך שבוע בשעת התרגול

הגשה תוך שבוע בשעת התרגול מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב את

קרא עוד

Slide 1

Slide 1 בעיית התוכנית הגדולה C תוכנית גדולה המבצעת פעולות רבות, יכולה להפוך לקשה מאוד לניהול אם נשתמש רק בכלים שלמדנו עד כה: 1. קשה לכתוב ולנפות את התוכנית,. קשה להבין אותה, 3. קשה לתחזק ולתקן אותה, 4. קשה להוסיף

קרא עוד

תוכן העניינים

תוכן העניינים הוצאת חושבים קדימה הילה קדמן # חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא למדעי המחשב תכנות מונחה אובייקטים תוכן עניינים טיפוסי נתונים מורכבים המחלקה String תזכורת לשימוש שעשינו במחלקה String str = new String( Hello ); s.o.p(str.tostring()); s.o.p(str.charat(4)); s.o.p(str.equals(

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

Slide 1

Slide 1 מבוא לתכנות ב- JAVA תרגול 5 מה בתרגול מחרוזות מערכים דו ממדיים מחרוזות (Strings) מחרוזת היא רצף של תווים. immutable על מנת ליצור ולטפל במחרוזות נשתמש במחלקה String למחלקה String מתודות שונות שמאפשרות פעולות

קרא עוד

עב 001 ינואר 12 מועד חורף פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית

קרא עוד

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ . [,] ו 0 f() f() עמוד מתוך 6 ז. אולחא מס' הקורס 97 חדו''א הנ מכונות f ( ) ( )( )( ) f (,), תשובות I ) פונ' לכן קיים פתרון רציפה וגזירה בקטע כך ש 0 ) (? f ( ) +, ± ± 0.58 (, ),.58,.4 יש n פעמים להשתמש

קרא עוד

תוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום

תוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום תוכן העניינים: פרק 2 3 צמצומים ומימושים של פונקציות בוליאניות 2 צמצומים של פונקציות באמצעות מפת קרנו: 2 שאלות: 2 תשובות סופיות: 4 צמצום באמצעות שיטת 6:QM שאלות: 6 תשובות סופיות: 7 מימושים בעזרת פונקציות

קרא עוד

PRESENTATION NAME

PRESENTATION  NAME נכתב ע"י כרמי גרושקו. כל הזכויות שמורות 2010 הטכניון, מכון טכנולוגי לישראל הקצאה דינמית )malloc( מערכים דו-מימדיים סיבוכיות: ניתוח כזכור, כדי לאחסן מידע עלינו לבקש זכרון ממערכת ההפעלה. 2 עד עכשיו: הגדרנו

קרא עוד

תוכן העניינים

תוכן העניינים הוצאת חושבים קדימה הילה קדמן חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527 kadman11@gmail.com

קרא עוד

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63> < 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות

קרא עוד

אנליזה מתקדמת

אנליזה מתקדמת א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:

קרא עוד

תוכן הגדרת שאלת רב-ברירה ]אמריקאית[...2 הגדרת שאלת נכון\לא נכון...8 שאלות אמריקאיות 1

תוכן הגדרת שאלת רב-ברירה ]אמריקאית[...2 הגדרת שאלת נכון\לא נכון...8 שאלות אמריקאיות 1 תוכן הגדרת שאלת רב-ברירה ]אמריקאית[...2 הגדרת שאלת נכון\לא נכון...8 1 הגדרת שאלת רב-ברירה ]אמריקאית[ הוספת השאלה 1. בבלוק הניהול הנמצא מימין נלחץ על מאגר שאלות.. 2. על מנת להוסיף שאלה חדשה נלחץ על לחצן

קרא עוד

PowerPoint Presentation

PowerPoint Presentation == vs equals תוכנה תרגול 7 :מנשקים, פולימורפיזם ועוד Point p = new Point(,) Point p = new Point(,) p == p p.equals(p) מתי נכון להשתמש בכל אחד מהם? שימו לב, במחלקה שכתבתם בעצמכם יש לכתוב מתודת equals על

קרא עוד

אוניברסיטת בן גוריון בנגב תאריך המבחן: שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות מס' הקורס : מיועד לתלמידי : הנד

אוניברסיטת בן גוריון בנגב תאריך המבחן: שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות מס' הקורס : מיועד לתלמידי : הנד אוניברסיטת בן גוריון בנגב תאריך המבחן: 29.01.19 שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות 202.1.9031 מס' הקורס : מיועד לתלמידי : הנדסת תעשיה וניהול שנה תשע"ט א' סמ' א' מועד 3 שעות משך

קרא עוד

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3> האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע

קרא עוד

PowerPoint Presentation

PowerPoint Presentation תוכנה תרגול 7 :מנשקים, פולימורפיזם ועוד * לא בהכרח בסדר הזה == vs equals Point p = new Point(,2) Point p2 = new Point(,2) p == p2 p.equals(p2) מתי נכון להשתמש בכל אחד מהם? שימו לב, במחלקה שכתבתם בעצמכם

קרא עוד

áñéñ åîéîã (ñéåí)

áñéñ åîéîã (ñéåí) מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא

קרא עוד

פיסיקה 1 ב' מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א'

פיסיקה 1 ב' מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א' פיסיקה 1 ב' 203-1-1391 מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב 03.08.2017 משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א' - שאלות אמריקאיות (כל שאלה - 5 נק') - יש לסמן תשובה

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשעב בחינת סיום, מועד א', הנחי אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך

קרא עוד

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0 פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות

קרא עוד

תרגול מס' 1

תרגול מס' 1 תרגול 6 הסתעפויות 1 מבוסס על שקפים מאת יאן ציטרין קפיצות לא מותנות Unconditional Branch br label PC לאחר ה- fetch של פקודת ה- branch PC לאחר הביצוע של פקודת ה- branch pc label br label הקפיצה מתבצעת תמיד,

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

Microsoft PowerPoint - 10_threads.ppt

Microsoft PowerPoint - 10_threads.ppt נוש אים מתקדמים ב Java תכ נות מ ר ובה חו ט י ם אוהד ברזילי אוניברסיטת תל אביב מק בי ל יות ריבוי מעבדים processors) (multi זמן עיבוד slicing) (time ל עו מת חלוק ת רמת התהליך (multithreading) ההפעלה processes)

קרא עוד

Microsoft Word ACDC à'.doc

Microsoft Word ACDC à'.doc דו"ח מסכם בניסוי: AC/DC חלק: א' סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): סרגיי ציון הדו"ח: II תאריך ביצוע הניסוי: 14/05/001 תאריך הגשת הדו"ח: 1/05/001 הדו"ח מוגש על ידי: II I

קרא עוד

פתרון 2000 א. טבלת מעקב אחר ביצוע האלגוריתם הנתון עבור הערכים : פלט num = 37, sif = 7 r האם ספרת האחדות של sif שווה ל- num num 37 sif 7 שורה (1)-(2) (

פתרון 2000 א. טבלת מעקב אחר ביצוע האלגוריתם הנתון עבור הערכים : פלט num = 37, sif = 7 r האם ספרת האחדות של sif שווה ל- num num 37 sif 7 שורה (1)-(2) ( פתרון 000 א. טבלת מעקב אחר ביצוע האלגוריתם הנתון עבור הערכים : num = 3, sif = r האם ספרת האחדות של sif שווה ל- num num 3 sif (1)-() (3) () אמת ) = ( 3 3 יודפס: 3. ב. פתרון שאלה 11 עבור הערכים: עבור סעיף

קרא עוד

Microsoft PowerPoint - Lecture1

Microsoft PowerPoint - Lecture1 Computer Organization and Programming ארגון ותכנו ת המחשב - את"מ הרצאה מבוא 2 שפה עילית מול שפ ת מ כונה שפה עילית language) (High level שפת מכונה Language) (Machine תכנית בשפ ה עיל ית (C, Pascal, ) תכנית

קרא עוד

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,

קרא עוד

מבוא למדעי המחשב - חובלים

מבוא למדעי המחשב - חובלים החוג למדעי המחשב אוניברסיטת חיפה מבוא למדעי המחשב סמסטר א' תשע"ג בחינת סיום, מועד ב', 20.02.2013 מרצה: ריטה אוסדצ'י מתרגלת: נעמה טוויטו מדריך מעבדה: מחמוד שריף משך המבחן: שעתיים חומר עזר: ספר של Kernighan

קרא עוד

Microsoft Word - c_SimA_MoedB2005.doc

Microsoft Word - c_SimA_MoedB2005.doc מרצה: שולי וינטנר. מתרגל: עזרא דאיה. מבוא למדעי המחשב בחינת מועד ב', סמסטר א' תשס"ה,.2.2005 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. ודאו כי בטופס שבידיכם עמודים. יש לכתוב

קרא עוד

PowerPoint Presentation

PowerPoint Presentation מבוא למדעי המחשב תירגול 6: כתובות ומצביעים 1 תוכנייה מצביעים מצביעים ומערכים, אריתמטיקה של מצביעים 2 3 מצביעים תזכורת- כתובות זיכרון הזיכרון כתובת התא #1000 #1004 #1008 ערך השמור בתא תא 10-4 לא מאותחל

קרא עוד

מספר מחברת: עמוד 1 מתוך 11 ת"ז: תשע"א מועד ב סמסטר א' תאריך: 00:11 שעה: 0 שעות הבחינה: משך כל חומר עזר אסור בשימוש בחינה בקורס: מבוא למדעי ה

מספר מחברת: עמוד 1 מתוך 11 תז: תשעא מועד ב סמסטר א' תאריך: 00:11 שעה: 0 שעות הבחינה: משך כל חומר עזר אסור בשימוש בחינה בקורס: מבוא למדעי ה עמוד 1 מתוך 11 תשע"א מועד ב סמסטר א' 14.2.2011 תאריך: 00:11 שעה: 0 שעות הבחינה: משך כל חומר עזר אסור בשימוש בחינה בקורס: מבוא למדעי המחשב יש לענות על כל 5 השאלות. בכל השאלות במבחן יש לכתוב פונקציות יעילות

קרא עוד

PowerPoint Presentation

PowerPoint Presentation תוכנה 1 3 תרגול מס' מתודות ותיכון לפי חוזים חוזה בין ספק ללקוח חוזה בין ספק ללקוח מגדיר עבור כל שרות: תנאי ללקוח - "תנאי קדם" precondition - - תנאי לספק "תנאי אחר".postcondition לקוח ספק 2 תנאי קדם )preconditions(

קרא עוד

חשבון אינפיניטסימלי מתקדם 1

חשבון אינפיניטסימלי מתקדם 1 חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי

קרא עוד

פייתון

פייתון שיעור 12: מילונים ברק גונן 1 או מילון, :hash table או,dictionary זוגות של מפתחות keys וערכים values מילון מוגדר על ידי סוגריים מסולסלים { } לדוגמה: מילון שמכיל ציונים, המפתח הוא מספר ת.ז ערך מפתח הגדרה

קרא עוד

Yoni Nazarathy

Yoni Nazarathy 1 נעזר בחומר משקפים של ד"ר נויה גלאי נוספו ת. השוואות מרובות שיטות פרק ב- 7 2 קונטרסטים זה יפה אבל לא מספיק... פירוק סכו ם הריבועים לקונ טר סטים מהווה תוצאה יפה. אבל באמצעות פרוק זה לא ניתן לענ ות על כל

קרא עוד

PowerPoint Presentation

PowerPoint Presentation תוכנה 1 תרגול 1: סביבת העבודה ומבוא ל- Java אלכסיי זגלסקי ויעל אמסטרדמר 1 בירוקרטיה אלכסיי זגלסקי שעת קבלה: שני 13:00-14:00, בתיאום מראש משרד: בניין הנדסת תוכנה, חדר 209 יעל אמסטרדמר שעת קבלה: חמישי 15:00-16:00,

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

Eliashiv Fraenkel Phd..pdf

Eliashiv Fraenkel Phd..pdf מ פ ג ש י ם ו ש י ח ו ת ש ל ח כ מ י ם ב ס י פ ו ר י ם ע ל ר ק ע ה ל כ ת י ב ת ל מ ו ד ה ב ב ל י ח י ב ו ר ל ש ם ק ב ל ת ה ת ו א ר ד ו ק ט ו ר ל פ י ל ו ס ו פ י ה מ א ת : א ל י ש י ב פ ר נ ק ל ה מ ח ל ק

קרא עוד

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63> משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת

קרא עוד

2013/14 אוניברסיטת חיפה מבוא למדעי מחשב, מעבדה מטרת המעבדה: לתרגל את המעבר מאלגוריתם לקוד C כמה שיותר. הוראות:.1.2 ניתן לעבוד ביחידים או בזוגות. (יש מ

2013/14 אוניברסיטת חיפה מבוא למדעי מחשב, מעבדה מטרת המעבדה: לתרגל את המעבר מאלגוריתם לקוד C כמה שיותר. הוראות:.1.2 ניתן לעבוד ביחידים או בזוגות. (יש מ מטרת המעבדה: לתרגל את המעבר מאלגוריתם לקוד C כמה שיותר. הוראות:.1.2 ניתן לעבוד ביחידים או בזוגות. (יש מספיק עמדות לכולם ולכן מומלץ לעבוד ביחידים). במהלך המעבדה יהיה עליכם לבצע משימות. אם תצטרכו עזרה בשלב

קרא עוד

Overview of new Office 365 plans for SMBs

Overview of new Office 365 plans for SMBs מעבר בין חבילות Online מעבר בין חבילות ב- Open Online to Open Current Plan Upgrade Options Current Plan Upgrade Options Business Essentials Business Premium Enterprise E1 Enterprise E3/E4 Enterprise E1

קרא עוד

משוואות דיפרנציאליות מסדר ראשון

משוואות דיפרנציאליות מסדר ראשון אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g

קרא עוד

PowerPoint Presentation

PowerPoint Presentation תכנות מתקדם בשפת Java אוניברסיטת תל אביב 1 תוכנה 1 תרגול 3: עבודה עם מחרוזות )Strings( מתודות )Methods( 1 תכנות מתקדם בשפת Java אוניברסיטת תל אביב 2 מחרוזות )STRINGS( 3 מחרוזות String s = Hello ; מחרוזות

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

Microsoft PowerPoint - T-10.ppt [Compatibility Mode]

Microsoft PowerPoint - T-10.ppt [Compatibility Mode] מבוא למחשב בשפת Matlab לולאות בלוקי try-catch :10 תרגול מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקשטיין, איתן אביאור, סאהר אסמיר וטל כהן עבור הקורס "מבוא למדעי המחשב" נכתב על-ידי רמי כהן,אולג רוכלנקו,

קרא עוד

PowerPoint Presentation

PowerPoint Presentation תוכנה 1 אוניברסיטת תל אביב INTERFACES תרגול מס' 7: מנשקים, פולימורפיזם ועוד * לא בהכרח בסדר הזה מנשקים )Interfaces( 2 מנשקים מנשק )interface( הוא מבנה תחבירי ב- Java המאפשר לחסוך בקוד לקוח. מנשק מכיל כותרות

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא כללי לתכנות ולמדעי המחשב 1843-0310 מרצה: אמיר רובינשטיין מתרגל: דין שמואל אוניברסיטת תל אביב סמסטר חורף 2017-8 חלק ב - מבוא לקריפטוגרפיה שיעור 5 (offset מונחים בסיסיים צופן קיסר (היסט,.1.2 1 Today

קרא עוד

Microsoft Word - c_SimA_MoedA2006.doc

Microsoft Word - c_SimA_MoedA2006.doc מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ו,..006 מרצה: מתרגלת: גב' יעל כהן-סיגל. גב' ליאת לוונטל. משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. יש לענות על כל השאלות.. קראו

קרא עוד

Slide 1

Slide 1 מבוא למדעי המחשב תירגול 7: פונקציות 1 מה היה שבוע שעבר? לולאות מערכים מערכים דו-ממדיים 2 תוכנייה )call by value( פונקציות העברת פרמטרים ע"י ערך תחום הגדרה של משתנה מחסנית הקריאות 3 פונקציות 4 הגדרה של

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

מדינת ישראל משרד החינוך נוסחאות ונתונים בפיזיקה נספח לכל בחינות הבגרות ברמה של 5 יח"ל תוכן העניינים נוסחאות עמוד מכניקה 2 אלקטרומגנטיות 3 קרינה וחומר

מדינת ישראל משרד החינוך נוסחאות ונתונים בפיזיקה נספח לכל בחינות הבגרות ברמה של 5 יחל תוכן העניינים נוסחאות עמוד מכניקה 2 אלקטרומגנטיות 3 קרינה וחומר מדינת ישראל משרד החינוך נוסחאות ונתונים בפיזיקה נספח לכל בחינות הבגרות ברמה של 5 יח"ל תוכן העניינים נוסחאות עמוד מכניקה אלקטרומגנטיות 3 קרינה וחומר 5 פעילויות מעבדה 6 נתונים עמוד קבועים בסיסיים 6 פירוש

קרא עוד

5-PhysicsFormula.indd

5-PhysicsFormula.indd מדינת ישראל משרד החינוך נוסחאות ונתונים בפיזיקה נספח לכל בחינות הבגרות ברמה של 5 יח"ל תוכן העניינים נוסחאות עמוד מכניקה אלקטרומגנטיות 3 קרינה וחומר 5 פעילויות מעבדה 6 נתונים עמוד קבועים בסיסיים 6 פירוש

קרא עוד

ðñôç 005 î

ðñôç 005 î ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,

קרא עוד

תורת הקומפילציה

תורת הקומפילציה תורת הקומפילציה תרגיל בית 2 הוראות לתרגיל 2 בשפת MINI-PASCAL הפרוייקט המצורף הינו קוד שלד של מהדר לשפת mini-pascal עליכם לממש בסביבת (Eclipse (Java את הפונקציות המתאימות לפי החומר שנלמד בהרצאה ע"מ שהמהדר

קרא עוד

Microsoft Word B

Microsoft Word B מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: 1. ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב

קרא עוד