תרגיל בית מספר 1#
|
|
- מילה לוין
- לפני5 שנים
- צפיות:
תמליל
1 תרגיל בית מספר 6 )אחרון!( - להגשה עד 12 ביוני )יום ראשון( בשעה ::225 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הגשה: תשובותיכם יוגשו בקובץ pdf ובקובץ py בהתאם להנחיות בכל שאלה. השתמשו בקובץ השלד skeleton6.py כבסיס לקובץ ה py אותו אתם מגישים. לא לשכוח לשנות את שם הקובץ למספר ת"ז שלכם לפני ההגשה, עם סיומת.py בסה"כ מגישים שני קבצים בלבד. עבור סטודנטית שמספר ת"ז שלה הוא הקבצים שיש להגיש הם.hw6_ py ו- hw6_ pdf הקפידו לענות על כל מה שנשאלתם. תשובות מילוליות והסברים צריכים להיות תמציתיים, קולעים וברורים. להנחיה זו מטרה כפולה: 1. על מנת שנוכל לבדוק את התרגילים שלכם בזמן סביר. 2. כדי להרגיל אתכם להבעת טיעונים באופן מתומצת ויעיל, ללא פרטים חסרים מצד אחד אך ללא עודף בלתי הכרחי מצד שני. זוהי פרקטיקה חשובה במדעי המחשב. הערות: חלק מן השאלות בתרגיל זה מבוססות על שאלות ממבחנים משנים קודמות, עם שינויים מסויימים..1 ליד כל שאלה מצויין מספר הנקודות שהיא מקנה בתרגיל הבית )לא בהכרח מספר הנקודות שהשאלה היתה שווה במבחן(. ניתן להגיע למקסימום של 111 נקודות..2 שאלה 6 לא תיבדק אך היא לקוחה ממבחן ומומלץ לפתור אותה לאחר שהנושא )קודים לאיתור ותיקון שגיאות( ילמד..3 עמ' 1 מתוך 8
2 שאלה 1 גנרטורים )20 נק'( r,n משולש פסקל הוא משולש אינסופי המורכב משורות של מספרים, כך שבשורה ה- האיבר ה- מוגדר כ:. a nr n n! r r!( n r!) 7 השורות הראשונות במשולש הן כדלהלן: נשים לב שניתן לקבל את השורה ה- i במשולש פסקל מהשורה ה- i-1 באופן הבא: האיבר הראשון והאיבר האחרון בשורה הם תמיד פרט לכך, האיבר ה- j בשורה ה- i הוא סכום האיבר ה- j-1 והאיבר ה- j בשורה ה- i נייצג כל שורה במשולש על ידי רשימה כך שהשורה ה- 1 היא הרשימה [1], השורה ה- 1 היא הרשימה[ 1,1 ] וכו'. סעיף א השלימו בקובץ השלד את הפונקציה,next_row(row) המקבלת את השורה ה- i-1 במשולש פסקל ומחזירה את השורה ה- i. )return( סעיף ב נייצג את משולש פסקל כזרם אינסופי של רשימות בצורה הבאה: []1], [1,1], [1,2,1], [1,3,3,1], השלימו בקובץ השלד את פונקצית הגנרטור() generate_pascal אשר מחזירה גנרטור המייצר את משולש פסקל. כלומר, בכל קריאה ל- next על הגנרטור להחזיר את השורה הבאה במשולש פסקל - בצורת רשימה. דוגמת הרצה: >>> gen = generate_pascal() >>> next(gen), next(gen), next(gen) ([1], [1,1], [1,2,1]) עמ' 2 מתוך 8
3 סעיף ג משולש ברנולי הוא המשולש שבו כל שורה היא רשימת הסכומים החלקיים של המקדמים הבינומיים, כלומר. a nk k i0 n i במילים אחרות, כל שורה במשולש ברנולי היא רשימת הסכומים החלקיים של השורה המתאימה במשולש פסקל. בפרט, המספר ה- i בשורה ה- j של משולש ברנולי הוא סכום i המספרים הראשונים של השורה ה- j במשולש פסקל. 7 השורות הראשונות במשולש ברנולי הן כדלהלן: נייצג את משולש ברנולי בצורה הדומה למשולש פסקל, כזרם אינסופי של רשימות: [[1], [1,2], [1,3,4], [1,4,7,8] השלימו בקובץ השלד משולש ברנולי. דוגמת הרצה: את פונקצית הגנרטור() generate_bernoulli אשר מחזירה גנרטור המייצר את >>> gen = generate_ bernoulli() >>> next(gen), next(gen), next(gen) ([1], [1,2], [1,3,4]) הנחיות הגשה: ממשו את הפונקציות מסעיפים א', ב' ו ג' בקובץ השלד. עמ' 3 מתוך 8
4 שאלה - 2 ניקוי רעש בתמונות )20 נק'( שימו לב שעל מנת להריץ את הפונקציות בשני הסעיפים הבאים עליכם לדאוג שבתיקיה (folder) בה נמצא קובץ הקוד שלכם נמצא גם הקובץ. matrix.py א. השלימו בקובץ השלד את שלוש השורות החסרות בפונקציה,upside_down שמקבלת מטריצה שמייצגת תמונה ומחזירה מטריצה חדשה שמייצגת את התמונה שמתקבלת ע"י שיקוף התמונה על הציר האופקי. לאחר הפעלת הפונקציה תתקבל התמונה: לדוגמא עבור התמונה: הפעילו את הפונקציה על התמונה the-simpsons.bitmap המצורפת לכם בין קבצי התרגיל. ב. בין קבצי התרגיל תמצאו את קובץ התמונה.atallbuilding.bitmap כפי שתוכלו לראות, קרוב לפינה השמאלית העליונה של התמונה נמצא כתם לבן. נרצה להסיר את הכתם תוך שמירה על חדות התמונה. a. נסו להשתמש בשיטות local means, local medians אשר הוצגו בשיעור על מנת להסיר את הכתם. נסו להשתמש בגדלי סביבה שונים ולהפעיל את הניקוי מספר פעמים בזו אחר זו. צרפו לקובץ ה pdf את תוצאות פעולות הניקוי, וכן השוואה קצרה בין ביצועי השיטות והסבר להבדלים בינהן..local medians נתאר עכשיו רעיון לשיטת ניקוי שונה מעט, שהיא וריאציה על b. i. ראשית, לא ננסה "לתקן" את כל הפיקסלים בתמונה, אלא רק את הפיקסלים הבהירים מאד והכהים מאד. בפרט, נתקן רק פיקסלים עם ערכי בהירות קטנים מ 5 או גדולים מ 251. ההנחה מאחורי שינוי זה היא שהרעש יצר ערכי בהירות קיצוניים..ii בבואנו לתקן פיקסלים בהירים, נשתמש רק בפיקסלים הלא-בהירים שבסביבתם על מנת לחשב את החציון )כלומר רק בפיקסלים שערך הבהירות שלהם הוא 251 ומטה(. באופן דומה, בבואנו לתקן פיקסלים כהים נשתמש רק בפיקסלים הלא-כהים שבסביבתם )ערך בהירות 5 ומעלה( על מנת לחשב את החציון. השלימו בקובץ השלד את הפונקציה modified_ median כך שקריאה לפונקציה modified_local_medians תבצע את התיקון שתואר לעיל. modified_local_medians מקבלת אוביקט מטיפוס Matrix ומחזירה אוביקט חדש מטיפוס.Matrix צרפו לקובץ ה pdf את תוצאות פעולת הניקוי, וכן השוואה קצרה עם התוצאות הקודמות. הערה כללית לשני הסעיפים: על מנת לצרף לקובץ ה pdf את תוצאות פעולות הניקוי, הציגו את אוביקט ה Matrix החדש על המסך באמצעות הפעלת המתודה display של המחלקה,Matrix קחו screen shot )צילום מסך( של התוצאה, וצרפו את התמונה שהתקבלה. עמ' 4 מתוך 8
5 שאלה 3 קארפ-רבין )22 נק'( שאלה זו עוסקת באלגוריתם קארפ-רבין לחיפוש מחרוזת בטקסט. סעיף א הקוד לפונקציה find_matches_kr אשר הוצג בשיעור עלול להחזיר, בנוסף לאינדקסים של מופעי מחרוזת ה-. גם אינדקסים של תת -מחרוזות אשר אינן זהות ל- pattern, text אותה אנו מחפשים בתוך מחרוזת ה- pattern אינדקסים כאלה נקראים, false positive כלומר מופעים שקריים שהקוד מחזיר בטעות. השלימו בקובץ השלד את הפונקציה find_matches_kr_safe אשר מבוססת על find_matches_kr אבל לא מחזירה לעולם false positive )וכמובן עדיין מחזירה את האינדקסים של כל המופעים האמיתיים של pattern ב - )text סעיף ב נתונה מחרוזת text באורך n ומחרוזת pattern באורך m, והניחו כי אנו משתמשים בערכי ברירת המחדל של r ושל base אשר ראינו בכתה. באיזה תרחיש )כלומר עבור אילו מחרוזות text ו- )pattern יגרום השינוי שביצעתם בסעיף א' לשינוי הגדול ביותר בזמן הריצה לעומת הקוד המקורי? תנו דוגמה והסבירו. מהי סיבוכיות הזמן במקרה זה? השוו אותה לזו של הפונקציה המקורית. סעיף ג נניח שמריצים את אלגוריתם קארפ-רבין על text ו- pattern אקראיים, כלומר כאלה שכל תו בהם מוגרל בהסתברות שווה מתוך האלפבית. האם צפוי הבדל בין זמן הריצה של הפונקציה המקורית לבין זה של הפונקציה שכתבתם בסעיף א'? הביאו דוגמאות הרצה ונמקו את מסקנתכם. אין צורך לבצע ניתוח סיבוכיות פורמלי. סעיף ד להלן פונקצית fingerprint אלטרנטיבית: def fingerprint_new (string, r=2**32-3): partial_sum=0 for x in string: partial_sum = (partial_sum + ord(x)) % r return partial_sum ממשו את הפונקציה (32-3**2=r text_fingerprint_new(string, length, כך שתפעל בדומה ל text_fingerprint המקורית אך תשתמש ב fingerprint_new לחישוב ה.fingerprints מה סיבוכיות זמן הריצה של text_fingerprint_new על מחרוזת באורך n? הסבירו. חוו דעתכם האם זו שיטה טובה לחישוב.fingerprints נמקו והדגימו, אם יש צורך. הנחיות הגשה: השלימו את קוד הפונקציות מסעיפים א' וד' בקובץ השלד. את התשובות המילוליות לסעיפים ב', ג', ד' רשמו בקובץ ה-.pdf עמ' 5 מתוך 8
6 שאלה 4 דחיסת האפמן )22 נק'( מועצת החכמים הבינלאומית לדחיסה קיבלה החלטה להחליף את הטכנולוגיה הספרתית הבינארית )המתבססת על שני ערכים 1 ו- ( 1 בטכנולוגיה ספרתית טרינארית: מידע ייוצג באמצעות שלושה ערכים שיסומנו,1 1 ו- 2.ברצוננו להתאים את האלגוריתם לבניית עצי האפמן לשיטה זו. בכל שלב האלגוריתם יאחד שלושה צמתים )במקום שניים( בעלי השכיחויות המינימליות. במקרה של יותר ממינימום אחד הבחירה ביניהם שרירותית. בנוסף, בחירת הסדר בין הבנים של צומת )שמאל, מרכז, ימין( היא שרירותית ואין לה חשיבות בשאלה זו. מכאן שלכל צומת בעץ שאיננו עלה יהיו כעת 3 בנים. יוצא דופן אחד הוא שורש העץ: אם מספר התווים השונים זוגי, לשורש יהיו רק שני בנים. א. נתון קורפוס המכיל את k התווים התפלגות התווים בקורפוס מקיימת את הכלל הבא: תדירות התו כאשר k מספר אי-זוגי כלשהו ומתקיים היא. נתון כי ב., ציירו את המבנה הכללי של עץ האפמן )טרינארי( המתקבל, ציינו את השכיחויות בעלים )אין צורך לתאר את שלבי בניית העץ(. נתון קובץ שמכיל תווים מתוך אלפבית בן בנוסף נתון קורפוס עם תדירויות: ומתקיים: תווים. )כאשר ). יהי p התו בעל התדירות המינימלית ( יהיו מהו ההפרש בין שדרושים כדי לקודד את התו (, ו- קודי ההאפמן שמתקבלים עבור התווים התו בעל התדירות המקסימלית ( בהתאמה. )מספר הביטים שדרושים כדי לקודד את התו.) ) לבין? ) ג. נתון קורפוס שמכיל את 01 התווים האחרים הינה 1. בונים מקורפוס זה עץ האפמן טרינארי., שכיחות התו )מספר הביטים הינה k ושכיחות כל 77 התווים.i.ii מהו k המינימלי שמבטיח שהתו יקבל קידוד באורך ביט אחד בלבד? מהו אורך הקידוד המקסימלי לתו בקורפוס במקרה זה? עליכם לתת הוכחה מנומקת לכל אחת מקביעותיכם. עמ' 6 מתוך 8
7 )20 נק'( שאלה 2 זיו למפל כזכור, באלגוריתם Lempel-Ziv דוחסים חזרות באורך לפחות 3 )מתעלמים מחזרות באורך 1,2 משום שדחיסתן אינה משתלמת(. אם נסמן ב- L את אורך החזרה המינימלי שהאלגוריתם דוחס, אז 3=L. האם תיתכן מחרוזת שדחיסתה עם 4=L תהיה יעילה יותר מאשר עם 3=L? כלומר האם ייתכן שגם אם גילינו חזרה באורך 3, ישתלם לא לדחוס אותה? אם לדעתכם כן, רשמו דוגמה למחרוזת כזו, וכן את את ייצוג הביניים* של הדחיסה, עבור 3=L ועבור 4=L. אם לדעתכם לא, הסבירו מדוע. * דוגמה לייצוג ביניים: ייצוג הביניים של המחרוזת abcabcdedede הוא [ a, b, c,(3,3), d, e,(2,4)] א..i ב. לפניכם מוצג קוד עבור הפונקציה genstring(n) שמייצרת מחרוזת באורך n מתוך התפלגות ידועה של שכיחות אותיות )הנתונה ע"י המחרוזת freq בקוד(. def genstring(n): freq = 'a'*25+'bcdefghijklmnopqrstuvwxyz' randletters = [random.choice(freq) for i in range(n)] return ''.join(randletters) תהי.s=genString(100000) איזו דחיסה צפויה לתת יחס דחיסה טוב יותר עבור Huffman s: או?Lempel-Ziv הסבירו את תשובתכם בצירוף מספר דוגמאות הרצה שיתמכו בה. אין צורך בהוכחה מתמטית פורמלית. הבהרה: קידוד Huffman כאן ישתמש ב- s הן בתור corpus והן בתור.text נחליף את המחרוזת freq במחרוזת הבאה: 'a'*2500+'bcdefghijklmnopqrstuvwxyz' freq = האם לדעתכם התשובה תשתנה? הסבירו..ii ג. נניח שעבור טקסט באורך n, מאפשרים לאורך החזרה המקסימלי באלגוריתם Lempel-Ziv להיות 1-n )במקום 31 כפי שמופיע בערכי ברירת המחדל של האלגוריתם שהוצג בהרצאה(. שאר פרטי האלגוריתם ללא שינוי. רוצים לדחוס באופן זה את המחרוזת באורך n. כיצד נראה ייצוג הביניים של הדחיסה? מהו יחס הדחיסה )=מספר הביטים במחרוזת הדחוסה חלקי מספר הביטים במחרוזת ללא שימוש בדחיסת למפל-זיו( כתלות ב- n? תנו תשובה בסדר גודל במונחים של ( )O. טיפ: כדאי לבדוק את התשובות בשאלה זו ע"י הרצות... עמ' 7 מתוך 8
8 שאלה 6 קודים לאיתור ולתיקון שגיאות )לא להגשה( חלק ראשון הקוד לתיקון טעויות המתואר כאן מעתיק 3 ביטים של אינפורמציה למילות קוד בנות 7 ביטים, על פי הסכמה הבאה: (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 1 + x 2, x 1 + x 3, x 2 + x 3, x 1 + x 2 +x 3 ) כאשר הסכומים מחושבים מודולו 2. א. בטבלה הבאה, השלימו בכל שורה את מילת הקוד המתקבלת מ- 3 הביטים הרשומים בה. (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 1 + x 2, x 1 + x 3, x 2 + x 3, x 1 + x 2 +x 3 ) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) ב. מהו המרחק המינימלי, d, של הקוד? רשמו שתי מילות קוד שונות w, 1, w 2 שהמרחק ביניהן הוא d. ג. כך שיש שתי מילות קוד שונות w, 1, w 2 המקיימות: המרחק של שתיהן מ- טענה: קיימת מילה y שווה, ומרחק זה הוא המרחק המינימלי מ- y למילת קוד כלשהי. החליטו אם הטענה הנ"ל נכונה. אם לדעתכם הטענה נכונה תנו דוגמה ל- w 2 w, 1 y, כאלו. אחרת הסבירו מדוע לא. חלק שני להלן פונקציית קידוד עבור קוד חדש בשם, bad_coding המקבלת רשימת ביטים x ומוציאה רשימת ביטים. def bad_coding(x): z = (x[0]+x[1]) % 2 return (x+[z])*4. תזכורת: קוד עם מרחק מינימלי נקרא קוד מטיפוס האורך של x יסומן כרגיל ב- x..[n=, k=, d= ] השלימו את המשפט הבא: bad_coding הוא קוד מטיפוס סוף עמ' 8 מתוך 8
ב ה. ד. ג. ב. ב. אוניברסיטת תל אביב - בית הספר למדעי המחשב מבוא מורחב למדעי המחשב, חורף :22 תרגיל בית מספר 6 - להגשה עד 66 בינואר 3162 בשעה קיר
ב ה ד ג ב ב אוניברסיטת תל אביב - בית הספר למדעי המחשב מבוא מורחב למדעי המחשב, חורף 3102 32:22 תרגיל בית מספר 6 - להגשה עד 66 בינואר 3162 בשעה קיראו בעיון את קובץ הנחיות הגשת תרגילי בית שמופיע באתר את הפונקציות
קרא עודתרגיל בית מספר 1#
ב 4 תרגיל בית מספר - 1 להגשה עד 72 באוקטובר בשעה ::725 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הנחיות והערות ספציפיות
קרא עודתאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה
תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב
קרא עודתרגיל בית מספר 1#
תרגיל בית מספר - 3 להגשה עד 15 באפריל בשעה 23:55 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הגשה: תשובותיכם יוגשו בקובץ
קרא עודפקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:
קרא עודאוניברסיטת תל אביב - בית הספר למדעי המחשב מבוא מורחב למדעי המחשב, אביב 2019 תרגיל בית מספר - 2 להגשה עד 02/04/2019 בשעה 23:55 קיראו בעיון את הנחיות הע
תרגיל בית מספר - 2 להגשה עד 02/04/2019 בשעה 23:55 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הגשה: תשובותיכם יוגשו
קרא עודהטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור
תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(
קרא עודתכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0
22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור
קרא עודמספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי
מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל
קרא עודMicrosoft Word - ExamA_Final_Solution.docx
סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד
קרא עודשאלהIgal : מערכים דו מימדיים רקורסיה:
אוניברסיטת בן גוריון בנגב מספר נבחן : תאריך המבחן: כ"ג מנ' אב תשע"ז 15.08.17 שמות המורים: ציון סיקסיק א' ב- C תכנות מבחן ב: 202-1-9011 מס' הקורס : הנדסה מיועד לתלמידי : ב' מועד סמ' ב' שנה תשע"ז 3 שעות
קרא עודMicrosoft Word - tutorial Dynamic Programming _Jun_-05.doc
הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,
קרא עודמבוא לתכנות ב- JAVA תרגול 7
מבוא לתכנות ב- JAVA תרגול 8 תזכורת - מבנה של פונקציה רקורסיבית.2 פונקציה רקורסיבית מורכבת משני חלקים עיקריים 1. תנאי עצירה: מקרה/מקרים פשוטים בהם התוצאה לא מצריכה קריאה רקורסיבית לחישוב צעד רקורסיבי: קריאה
קרא עודשאלהIgal : מערכים דו מימדיים רקורסיה:
אוניברסיטת בן גוריון בנגב מספר נבחן : תאריך המבחן: כ"ג חשון תשע"ח 12/11/17 שמות המורים: ציון סיקסיק א' ב- C תכנות מבחן ב: 202-1-9011 מס' הקורס : הנדסה מיועד לתלמידי : ב' מועד קיץ סמ' שנה תשע"ז 3 שעות משך
קרא עוד<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>
< 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות
קרא עודתוכן העניינים
הוצאת חושבים קדימה הילה קדמן חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527 kadman11@gmail.com
קרא עודשאלהIgal : מערכים דו מימדיים רקורסיה:
אוניברסיטת בן גוריון בנגב מספר נבחן : תאריך המבחן: כ"ח תשרי תשע"ז 30.10.16 שמות המורים: ציון סיקסיק א' תכנות ב- C מבחן ב: 202-1-9011 מס' הקורס : הנדסה מיועד לתלמידי : ב' מועד סמ' קיץ שנה תשע"ו 3 שעות משך
קרא עודמבוא למדעי המחשב
מבוא כללי לתכנות ולמדעי המחשב 1843-0310 מרצה: אמיר רובינשטיין מתרגל: דין שמואל אוניברסיטת תל אביב סמסטר חורף 2017-8 חלק ב - מבוא לקריפטוגרפיה שיעור 5 (offset מונחים בסיסיים צופן קיסר (היסט,.1.2 1 Today
קרא עודאוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג,.6.013 משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם 8 עמודי שאלון )כולל עמוד זה(. עליכם לכתוב את התשובות על
קרא עודמטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו
מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה
קרא עודאוניברסיטת בן גוריון בנגב תאריך המבחן: שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: מס' הקורס : הנדסת תעשיה וניהול מ
אוניברסיטת בן גוריון בנגב תאריך המבחן: 12.02.17 שקולניק אלכסנדר שם המרצה: מר בשפת JAVA מבוא לתכנות מבחן ב: 202.1.9031 מס' הקורס : הנדסת תעשיה וניהול מיועד לתלמידי : א' מועד א' סמ' שנה תשע"ד 3 שעות משך
קרא עודאוניברסיטת בן גוריון בנגב תאריך המבחן: שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות מס' הקורס : מיועד לתלמידי : הנד
אוניברסיטת בן גוריון בנגב תאריך המבחן: 29.01.19 שם המרצה: מר אלכסנדר שקולניק, בשפת JAVA מבחן ב: מבוא לתכנות 202.1.9031 מס' הקורס : מיועד לתלמידי : הנדסת תעשיה וניהול שנה תשע"ט א' סמ' א' מועד 3 שעות משך
קרא עודתורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב
תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,
קרא עודמבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב
מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180
קרא עודתשע"דד אביב תוכנה 1 תרגיל מספר 4 עיבוד מחרוזות וקריאה מקבצים הנחיות כלליות: קראו בעיון את קובץ נהלי הגשת התרגילים אשר נמצא באתר הקורס..(
תשע"דד אביב תוכנה 1 תרגיל מספר 4 עיבוד מחרוזות וקריאה מקבצים הנחיות כלליות: קראו בעיון את קובץ נהלי הגשת התרגילים אשר נמצא באתר הקורס..(http://mdle.tau.ac.il/) בלבד הגשת התרגיל תעשה במערכת ה- mdle aviv
קרא עודתכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה
תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר
קרא עודאוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך
קרא עודתוכן העניינים
הוצאת חושבים קדימה הילה קדמן # חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527
קרא עודתוכנה 1 1 אביב תשע"ג תרגיל מספר 5 מערכים, מחרוזות, עיבוד טקסט ומבני בקרה הנחיות כלליות: קראו בעיון את קובץ נהלי הגשת התרגילים אשר נמצא באתר הקורס. הגש
תוכנה 1 1 אביב תשע"ג תרגיל מספר 5 מערכים, מחרוזות, עיבוד טקסט ומבני בקרה הנחיות כלליות: קראו בעיון את קובץ נהלי הגשת התרגילים אשר נמצא באתר הקורס. הגשת התרגיל תיעשה במערכת ה- mdle בלבד.(http://mdle.tau.ac.il/)
קרא עודפייתון
שיעור 12: מילונים ברק גונן 1 או מילון, :hash table או,dictionary זוגות של מפתחות keys וערכים values מילון מוגדר על ידי סוגריים מסולסלים { } לדוגמה: מילון שמכיל ציונים, המפתח הוא מספר ת.ז ערך מפתח הגדרה
קרא עודתרגול 1
מבוא למדעי המחשב 2019 תרגול 5 מחרוזות, חתימות ורקורסיה מחרוזות רצף של תווים רקורסיה קריאה של מתודה לעצמה באופן ישיר או עקיף ראינו בהרצאה מחרוזות: תווים, חתימות: העמסה- String,הצהרה, overloading אתחול רקורסיה:
קרא עודמבוא למדעי המחשב - חובלים
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב סמסטר ב' תשע"ב בחינת סיום, מועד ב',.02..9.7 מרצה: אורן וימן מתרגלים: נעמה טוויטו ועדו ניסנבוים מדריכי מעבדה: מחמוד שריף ומיקה עמית משך המבחן: שעתיים חומר
קרא עוד<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>
1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $
קרא עודאוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך
קרא עודמבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים
מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t
קרא עודAlgorithms Tirgul 1
- מעגלי אוילר ומסלולי אוילר תרגול 1 חידה: האם אפשר לצייר את הציורים הבאים בלי להרים את העיפרון מהנייר? 1 קצת אדמיניסטרציה אופיר פרידלר ophir.friedler@gmail.com אילן כהן - ilanrcohen@gmail.com שעות קבלה
קרא עודPowerPoint Presentation
מבוא למדעי המחשב תירגול 6: כתובות ומצביעים 1 תוכנייה מצביעים מצביעים ומערכים, אריתמטיקה של מצביעים 2 3 מצביעים תזכורת- כתובות זיכרון הזיכרון כתובת התא #1000 #1004 #1008 ערך השמור בתא תא 10-4 לא מאותחל
קרא עודMicrosoft Word - hedva 806-pitronot-2011.doc
ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על
קרא עודMicrosoft Word - c_SimA_MoedB2005.doc
מרצה: שולי וינטנר. מתרגל: עזרא דאיה. מבוא למדעי המחשב בחינת מועד ב', סמסטר א' תשס"ה,.2.2005 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. ודאו כי בטופס שבידיכם עמודים. יש לכתוב
קרא עוד234114
)234117 )234114 \ סמסטר חורף תשע"ז 2017 מבחן מסכם מועד א', 21 לפברואר 2 3 4 1 1 מספר סטודנט: רשום/ה לקורס: משך המבחן: 3 שעות. חומר עזר: אין להשתמש בכל חומר עזר. הנחיות כלליות: מלאו את הפרטים בראש דף זה
קרא עודמועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו
מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות
קרא עודעבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות
עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו
קרא עודפתרון מוצע לבחינת מה"ט ב_שפת c מועד ב אביב תשע"ט, אפריל 2019 מחברת: גב' זהבה לביא, מכללת אורט רחובות שאלה מספר 1 מוגדרת מחרוזת המורכבת מהספרות 0 עד 9.
פתרון מוצע לבחינת מה"ט ב_שפת c מועד ב אביב תשע"ט, אפריל 2019 מחברת: גב' זהבה לביא, מכללת אורט רחובות שאלה מספר 1 מוגדרת מחרוזת המורכבת מהספרות 0 עד 9. הדפסה ראשונה: מתבצעת לולאה שרצה מאפס עד אורך המחרוזת.
קרא עודTutorial 11
מבוא לשפת C תרגול 8: מערכים רב-ממדיים תרגילים בנושא מערכים ורקורסיה מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקנשטיין, איתן אביאור וסאהר אסמיר עבור הקורס "מבוא למדעי המחשב" נכתב ע"י טל כהן, עודכן ע"י
קרא עודMicrosoft Word - עבודת פסח לכיתה י 5 יחל.doc
עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים
קרא עוד1 תבניות טקסט מהי תבנית טקסט? שימוש ב- Characters Meta שימוש ב- Expression Grouping שימוש ב- Quantifiers תת תבניות הפונקציה preg_match הפונקציה preg_m
1 תבניות טקסט מהי תבנית טקסט? שימוש ב- Characters Meta שימוש ב- Expression Grouping שימוש ב- Quantifiers תת תבניות הפונקציה preg_ הפונקציה preg all הפונקציה str_replace הפונקציה preg_replace 2 מהי תבנית
קרא עודתכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח
תכנות דינמי פרק 6, סעיפים -6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח בסוף את הטוב ביותר. סכום חלקי sum) (subset הקלט: סדרה
קרא עודמבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו
מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן
קרא עודMicrosoft Word - SDAROT 806 PITRONOT.doc
5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את
קרא עודמבוא למדעי המחשב - חובלים
החוג למדעי המחשב אוניברסיטת חיפה מבוא למדעי המחשב סמסטר א' תשע"ג בחינת סיום, מועד ב', 20.02.2013 מרצה: ריטה אוסדצ'י מתרגלת: נעמה טוויטו מדריך מעבדה: מחמוד שריף משך המבחן: שעתיים חומר עזר: ספר של Kernighan
קרא עודSlide 1
מבוא לתכנות ב- JAVA תרגול 5 מה בתרגול מחרוזות מערכים דו ממדיים מחרוזות (Strings) מחרוזת היא רצף של תווים. immutable על מנת ליצור ולטפל במחרוזות נשתמש במחלקה String למחלקה String מתודות שונות שמאפשרות פעולות
קרא עודהגשה תוך שבוע בשעת התרגול
מרצה: שולי וינטנר. מתרגל: עזרא דאיה. מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ה, 6..5 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב
קרא עודייבוא וייצוא של קבצי אקסל וטקסט
ייבוא וייצוא של קבצי אקסל וטקסט (Importing & Exporting MS Excel Files and Text) ייבוא (Import) הפיכת קובץ טקסט, Excel מבסיס נתונים אחר. או סוגים אחרים, לטבלת,Access או העתקת טבלת Access בתחילת התהליך יש
קרא עודSlide 1
מבוא למדעי המחשב תירגול 4: משתנים בוליאניים ופונקציות מבוא למדעי המחשב מ' - תירגול 4 1 משתנים בוליאניים מבוא למדעי המחשב מ' - תירגול 4 2 ערכי אמת מבחינים בין שני ערכי אמת: true ו- false לכל מספר שלם ניתן
קרא עודבגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,
,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא
קרא עודSlide 1
מבוא למחשב בשפת C : מערכים חד ודו-ממדיים מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקשטיין, איתן אביאור וסאהר אסמיר עבור הקורס "מבוא למדעי המחשב". עודכן ע"י דן רביב נכתב על-ידי טל כהן, נערך ע"י איתן אביאור.
קרא עודשבוע 4 סינטקס של HACK ASSEMBLY ניתן להשתמש בשלושה אוגרים בלבד:,A,D,M כולם בעלי 16 ביטים. M אינו אוגר ישיר- הוא מסמן את האוגר של ה RAM שאנחנו מצביעים ע
שבוע 4 סינטקס של HACK ASSEMBLY ניתן להשתמש בשלושה אוגרים בלבד:,A,D,M כולם בעלי 16 ביטים. M אינו אוגר ישיר- הוא מסמן את האוגר של ה RAM שאנחנו מצביעים עליו כרגע )A מצביע עליו(. יש שני סוגי פקודות, פקודת
קרא עודמקביליות
תכונות שמורה Invariant Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון 2 בדיקות מודל Checking( )Model מערכת דרישות מידול פירמול בדיקות מודל )Model Checking( מודל של המערכת תכונות פורמליות סימולציה
קרא עודדף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב
דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של
קרא עודשאלה 2. תכנות ב - CShell
ביה"ס למדעי המחשב 4.2.2018 האקדמית נתניה מבחן מועד א' יסודות מערכות פתוחות סמסטר חורף, תשע"ח משך המבחן: שלוש וחצי שעות. יש לענות על כל השאלות. מותר השימוש בחומר עזר כלשהו, פרט למחשבים, (מחשבונים מותר).
קרא עוד<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>
משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת
קרא עודתרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra
תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות
קרא עודיחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר
יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את
קרא עודMicrosoft Word - c_SimA_MoedA2006.doc
מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ו,..006 מרצה: מתרגלת: גב' יעל כהן-סיגל. גב' ליאת לוונטל. משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. יש לענות על כל השאלות.. קראו
קרא עודתרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L
תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,
קרא עודמבוא למדעי המחשב
מבוא למדעי המחשב מחרוזות, חתימה של פונקציה ומעטפות תוכן עניינים טיפוסים מורכבים טיפוסים מורכבים ערך שם טיפוס 12 m int undef. x boolean true y boolean arr int[] כאלה שעשויים להכיל יותר מערך פרימיטיבי אחד
קרא עודסדנת תכנות ב C/C++
פקולטה: מדעי הטבע מחלקה: מדעי המחשב שם הקורס: מבוא למחשבים ושפת C קוד הקורס: 2-7028510 תאריך בחינה: 15.2.2017 משך הבחינה: שעתיים שם המרצה: ד"ר אופיר פלא חומר עזר: פתוח שימוש במחשבון: לא הוראות כלליות:
קרא עודMicrosoft Word - Ass1Bgu2019b_java docx
ת ר ג י ל 1 ב ק ו ר ס מ ב ו א לתכנות 202.1.9031 JAVA סמסטר ב, ת נ א י ם ו ל ו ל א ו ת תאריך אחרון להגשה בציון מלא : 02.04.19 עד שעה : 23:55, כ ל יום איחור ל א מ א ו ש ר א ו ח ל ק ממנו מודריד 10 נקודות
קרא עודסדרה חשבונית והנדסית
.2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.
קרא עודמספר נבחן / תשס"ג סמסטר א' מועד א' תאריך: שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר
מספר נבחן 2002 2003 / תשס"ג סמסטר א' מועד א' תאריך: 29.1.03 שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר: אין שימוש במחשבון: מותר בבחינה 10 עמודים כולל עמוד
קרא עודתוכנה 1 אביב תשע"ח תרגיל מספר 8 אוספים גנריים ו- framework collection הנחיות כלליות: קראו בעיון את קובץ נהלי הגשת התרגילים אשר נמצא באתר הקורס. הגשת ה
תוכנה 1 אביב תשע"ח תרגיל מספר 8 אוספים גנריים ו- framework collection הנחיות כלליות: קראו בעיון את קובץ נהלי הגשת התרגילים אשר נמצא באתר הקורס. הגשת התרגיל תיעשה במערכת ה- moodle בלבד.(http://moodle.tau.ac.il/)
קרא עודמדריך למרצים ומתרגלים 1
מדריך למרצים ומתרגלים 1 תוכן עניינים מדריך למרצים ומתרגלים...1 קבלת סיסמה לתחנת מידע למרצה...3 הוספת חומרי למידה...6 הוספת מורשה גישה לאתר הוספת מטלה קורס...9 לאתר הקורס...11 בחירת בודקים למטלה...17 מערכת
קרא עודהנחיות הורדה ותפעול לספרים דיגיטלים. הוצאת כנרת, זמורה ביתן שמחה להגיש לכם, התלמידים, ספר דיגיטלי. הספרים עצמם הינם בקבצי PDF הניתנים להורדה ללא עלות
הנחיות הורדה ותפעול לספרים דיגיטלים. הוצאת כנרת, זמורה ביתן שמחה להגיש לכם, התלמידים, ספר דיגיטלי. הספרים עצמם הינם בקבצי PDF הניתנים להורדה ללא עלות וללא צורך ברישום לאתר למשתמשי סדרת פשוט חשבון. בספרים:
קרא עודתאריך הבחינה 30
אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א
קרא עודMicrosoft Word B
מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: 1. ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב
קרא עודאוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו
אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', 31.1.2017 מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבוני, דולב שרון הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה
קרא עודHaredimZ2.indb
יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.
קרא עוד. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים
שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4
קרא עודאוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'
אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט
קרא עודתיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות
תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...
קרא עודex1-bash
ביה"ס למדעי המחשב סמסטר חורף תשע"ח 13.12.2017 יסודות מערכות פתוחות פתרון תרגיל מס' 7 המכללה האקדמית נתניה שימו לב: כל ההערות שבתחילת תרגילים 1-6 תקפות גם לתרגיל זה. הערה 1: החל מתרגיל זה והלאה, בכל פעם
קרא עודעמוד 1 מתוך 5 יוחאי אלדור, סטטיסטיקאי סטטיסטיקה תיאורית + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- 2 תחומים עיקריים- סטט
עמוד מתוך + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- תחומים עיקריים- וסטטיסטיקה היסקית; בסטטיסטיקה היסקית משערים השערות, משווים בין קבוצות באוכלוסיה ועוד, אך גם מ ניתן ללמוד הרבה על האוכלוסיה-
קרא עודSlide 1
Introduction to Programming in C תרגול 8 1 1 רקורסיה תזכורת הגדרה: המונח רקורסיה (recursion) מתאר מצב שבו פונקציה קוראת לעצמה באופן ישיר או באופן עקיף. שימוש: נוח להשתמש בפונקציות רקורסיביות על מנת לפתור
קרא עודData Structure Assignment no.3 תאריך הגשה: p.m. 11/09/16, 23:59 את העבודה יש להגיש בזוגות במערכת ההגשות.submission system על העבודה להיות מוגשות כקובץ
Data Structure Assignment no.3 תאריך הגשה: p.m. 11/09/16, 23:59 את העבודה יש להגיש בזוגות במערכת ההגשות.submission system על העבודה להיות מוגשות כקובץ pdf יחיד בלבד. הנכם נדרשים לנסח תשובות ברורות עליכם
קרא עודMicrosoft Word - two_variables3.doc
משימה שני תלמידים פתרו את מערכת המשוואות הבאה y 7 2y 2. שי פתר בשיטת השוואת מקדמים: I. 2x y 7 II. 2x 2y 2 דנה פתרה בשיטת הצבה: I. 2x y 7 II. 2x 2y 2 I. y = 7 2x II. 2x 2(7 2x) = 2 2x 4 + 4x = 2 6x 4 =
קרא עודregular_expression_examples
ביטוי רגולארי או באנגלית: Regular Expression כאשר רוצים לחפש על נושא מסוים (למשל בגוגל), כותבים בערך מה שרוצים ואז מנוע החיפוש מביא לנו המון קישורים שיש בהם את מה שחיפשנו בצורות שונות ומגוונות. אם איננו
קרא עוד2013/14 אוניברסיטת חיפה מבוא למדעי מחשב, מעבדה מטרת המעבדה: לתרגל את המעבר מאלגוריתם לקוד C כמה שיותר. הוראות:.1.2 ניתן לעבוד ביחידים או בזוגות. (יש מ
מטרת המעבדה: לתרגל את המעבר מאלגוריתם לקוד C כמה שיותר. הוראות:.1.2 ניתן לעבוד ביחידים או בזוגות. (יש מספיק עמדות לכולם ולכן מומלץ לעבוד ביחידים). במהלך המעבדה יהיה עליכם לבצע משימות. אם תצטרכו עזרה בשלב
קרא עודפתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0
פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות
קרא עודמשימה תכנית המתרגמת קטעי טקסט לשפה אחרת הקלט: קובץ המכיל את קטעי הטקסט וכן את השפה אליה רוצים לתרגם תרגול מס' 4: המתרגם שימוש במחלקות קיימות תכנות מתק
משימה תכנית המתרגמת קטעי טקסט לשפה אחרת הקלט: קובץ המכיל את קטעי הטקסט וכן את השפה אליה רוצים לתרגם תרגול מס' 4: המתרגם שימוש במחלקות קיימות 2 הפשטה שאלות כצעד ראשון נפתור בעיה הרבה יותר פשוטה האם כבר
קרא עודמבוא למדעי המחשב
מבוא כללי לתכנות ולמדעי המחשב 1843-0310 מרצה: אמיר רובינשטיין מתרגל: דין שמואל אוניברסיטת תל אביב סמסטר חורף 2017-8 חלק א - השיטה הבינארית שיעור 5 ו- 1? ספירה בבסיס 2 ואיך אומרים "hello" עם 0 1 ממעגלים
קרא עודPowerPoint Presentation
תוכנה 1 תרגול 1: סביבת העבודה ומבוא ל- Java 1 מנהלות אתר הקורס: http://courses.cs.tau.ac.il/software1/1516b/ מתרגלים: ברית יונגמן )שעת קבלה: שלישי ב- 8:00 בתיאום מראש( לנה דנקין )שעת קבלה: שלישי ב- 17:00,
קרא עודUntitled
2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim
קרא עודMicrosoft PowerPoint - T-10.ppt [Compatibility Mode]
מבוא למחשב בשפת Matlab לולאות בלוקי try-catch :10 תרגול מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקשטיין, איתן אביאור, סאהר אסמיר וטל כהן עבור הקורס "מבוא למדעי המחשב" נכתב על-ידי רמי כהן,אולג רוכלנקו,
קרא עודMicrosoft Word - solutions.doc
תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה
קרא עודתרגיל 5-1
תרגיל 1 יחסי העדפה, פונקציות תועלת, עקומות אדישות וקווי תקציב כל השאלות להלן מתייחסות לצרכן שהעדפותיו מוגדרות על סלי צריכה של שני מוצרים. העדפות אלה הן רציונאליות (ז"א, מקיימות את תכונות השלמות והטרנזיטיביות).
קרא עודע 003 מרץ 10 מועד מיוחד פתרונות עפר
בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר
קרא עודסז 002 נואר 07 מועד חורף פתרונות עפר
הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות
קרא עודתוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום
תוכן העניינים: פרק 2 3 צמצומים ומימושים של פונקציות בוליאניות 2 צמצומים של פונקציות באמצעות מפת קרנו: 2 שאלות: 2 תשובות סופיות: 4 צמצום באמצעות שיטת 6:QM שאלות: 6 תשובות סופיות: 7 מימושים בעזרת פונקציות
קרא עוד