. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים

גודל: px
התחל להופיע מהדף:

Download ". שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים"

תמליל

1 שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4 )6 נק'( ב( בדקו האם הפיך מצאו את כל הפולינומים f ( x) ax bx cx d B[ V ] 03 ax bx cx d 0 0 ( ) 0 0 B[ V ] ( ) 0 0 ( ) 0 ax bx cx d f x x x x ( ) כך ש )) ( ( עבור כל ואת n N ax bx cx d )6 נק'( ג( מצאו את מצאו את n ( ) פתרון חלקי א( נבחרו בסיס ( x x x) [ ] x x x x x x x 0 0 x 0 0 xi [ ] dt( ) ( x )( x ) x ( x ) ( x ) x 0 0 x x ( xi [ ] ) x 3 ( ) ( ) ( ) () 0 V נחשב המרחב העצמי המערכת נציב ואחורי הדירוג במטריצה ונקבל u u 0 u u ו ( xi [ ] ) x V ( I [ ] ) u 0 נחשב המרחב העצמי המערכת נציב ואחורי הדירוג במטריצה ונקבל u u 0 u u 0 ו 3 4 ( xi [ ] ) x 0 ( I [ ] ) u 0 V 0 נחשב המרחב העצמי המערכת נציב ואחורי הדירוג במטריצה ו ונקבל 0 0 B[ V 0 ] ( ) 0 a ( x x x x x ) u u u3 0 [ ] u 0 R [ x] 4 בסיס של המורכב מוקטורים עצמיים של הוא

2 הערה שיטה מהגדרה של נובע כי () 0 ( x ) x ( x x ) x x ( x x ) ( x x ) אזי הערכים העצמיים של ) ( x ) ( x ובסיס של x הם 0 ה פולינום האופייני של R המורכב מוקטורים עצמיים של הוא הוא [ x] 4 a x x x x x ( ) d ) Kr( ) {0} b a c 0 ב( לא הפיך מפני ש )ז"ר ו- k 0 ax bx cx d bx ax cx c x x x ( ) f ( x) x x x d f x x x x Kr x x x Span ( ) ( ) () D D D חופשי שיטה ג( שיטה k 03 k 03 D D D k 0 k ( ax bx cx d) bx ax cx c k ( ax bx cx d) ( ax bx cx d) ( bx ax cx c) ax bx cx c ( x ) ( x ) ( x ) x k 0 3 n 00 () () () 0 ( x ) ( x ) ( x ) x k 03 3 שיטה x x x x n 00 ( ) ( ) ( ) k k k k k ( ax bx cx d) a ( x ) b ( x ) c ( x) d () bx ax cx c ( x ) ( x ) ( x ) x k 0 ( x ) ( x ) ( x ) x k k k k k k ( ax bx cx d) a ( x ) b ( x ) c ( x) d () ax bx cx c v v v3 v4 שיטה 3 שמצאנו בסעיף א ו- D כאשר a a היא מטריצה אלכסונית מסעיף א הם ווקטוררם [ ] [ I] D [ I] n a n a a a [ ] [ I] [ ] [ I] [ v v v v ] D[ v v v v ] n n [ ( ax bx cx d)] [ ] a b c d ו- שאלה : U ( ) 3 4 ידוע כי יהא מעל הוא בסיס אורטונורמלי של מרחב מכפלה פנימית אופרטור ליניארי המוגדר על-ידי : U U C ( a a a a ) ( ia a ) ( ia ia ) ( a ia ) ( a a ) Kr( ) )9 נק'( א( מצאו בסיס אורתונורמלי ל-

3 של הווקטור pr ( ( ) ) Kr ב( מצאו את ההיטל אורתוגונאלי ( Kr ) ל- )8 נק'( * *( ) 3 ג( מצאו את כאשר זהו האופרטור ליניארי הצמוד של )8 נק'( לשם כך אפשר לכתוב את המטריצה המייצגת את לפי הבסיס פתרון: א( ראשית נמצא את ולמצוא את מרחב הפתרונות ( או ה'גרעין' של המטריצה( מתקבלת המטריצה הבאה: נמצא )הערה: יש כאלה שכתבו שמכיוון ש- בסיס וקטור כללי בגרעין אם ורק אם המקדמים של בפיתוח לפי הבסיס שמופיע בשאלה מתאפסים זו טענה שקולה לגמרי ומערכת המשוואות המתקבלת נותנת את אותה המטריצה( דירוג המטריצה או חישוב ישיר מעלים שהגרעין הוא חד מימדי ואפשר לכתוב: היא 0 המרחב הניצב ל- מורכב מהוקטורים שמכפלתם עם הוקטור בהמשך נרצה לעבוד עם וקטורי קואורדינטות לפי הבסיס כדי להקל על החישובים כך למשל הוקטורים במרחב הניצב הם אלה שוקטורי הקואורדינטות שלהם לפי הבסיסהנתונים ע"י מקיימים: כלומר: בעזרת התנאי הזה אפשר למצוא בסיס למרחב המורכב מ- 3 וקטורים למשל: כאשר מתקיים: )זכרו שהמרחב הניצב צריך להיות תלת מימדי במקרה שלנו( Kr( ) קל לראות ששלושת הוקטורים הם בלתי תלויים לינארית ושייכים ל- לשם נוחות כדי לקבל בסיס אורתונורמלי מבצעים את תהליך גראם שמידט על הבסיס שקיבלנו עם המכפלה הסטנדרטית לבין המרחב החישוב נבצע אותו על וקטורי הקואורדינטות )נזכיר שההעתקה ממרחב מכפלה פנימית n -מימדי מעל בסיס אורתונורמלי היא איזומורפיזם של מרחבי מכפלה כאשר המתקבלת מההתאמה פנימית ו אין בעיה לבצע את החישובים על וקטורי הקואורדינטות בהמשך לא נדייק ונסמן את וקטורי הקוארדינטות כמו את הוקטורים עצמם( ראשית מנרמלים את הוקטור הראשון ומקבלים עתה את במילים אחרות בגלל האופן שבו נבחר הבסיס צריך רק לנרמל

4 לבסוף נכתוב: מתקיים: הוקטור כבר מנורמל ו- : לסיכום נכתוב את הבסיס האורתונורמלי למרחב הניצב לגרעין של כוקטורים ב- הערה: הבסיס האורתונורמלי שמתקבל תלוי בבסיס הרגיל שבחרנו למרחב הניצב ושעליו ביצענו את תהליך גראם-שמידט אין כמובן פתרון יחיד לשאלה כי יש אינסוף בסיסים אורתונורמליים למרחב ב(ההיטל של למרחב הניצב נתון ע"י pr ( ( ) ) Kr לשם נוחות החישוב נעבור שוב לוקטורי קואורדינטות לפי הבסיס הנתון: pr ( ( ) ) Kr = או באופן יותר מדויק: pr ( ( ) ) Kr דרך אחרת למצוא את ההיטל על המרחב הניצב לגרעין היא לחסר מ- לגרעין: pr ( ( ) ) Kr את ההיטל שלו

5 לשם כך צריך למצוא בסיס אורתונורמלי ל- וזה נתון למשל )בקואורדינטות( ע"י מזה נובע ש- ג( ראינו כבר בפתרון סעיף א' שהמטריצה המייצגת את לפי הבסיס היא מכיוון ש- בסיס אורתונורמלי מתקיים: ו נובע מכאן שבקואורדינטות לפי הבסיס מתקבל: ומכאן נקבל: שאלה 3 ast i ומצאו בסיס st כך שלכל 7 [ ast ( 3 נקי( א( תהא C) ] AM7 7( האם A לכסינה? אם כן מצאו מטריצה אלכסונית D הדומה ל- A 7 של C המורכב מווקטורים עצמים של A אם לא נמקו מדוע לא s s ast i st כך שלכל 0 [ ast ( נקי( ב( תהא C) ] AM0 0( האם A לכסינה? אם כן מצאו מטריצה אלכסונית D הדומה ל- A ומצאו בסיס 0 של C המורכב מווקטורים עצמים של A אם לא נמקו מדוע לא

6 שאלה : R) A M ( כך ש rank( A) אזי בהכרח מתקיים: 33 נתונה מטריצה א מטריצה A ניתנת לליכסון 3 b למערכת המשוואות הליניאריות Ax b קיים פתרון ב לכל R 0 dt( A ) dt( A) ג ד צורה קנונית של A שווה ל- I )מטרצת יחידה( rank ( A) 3 0 פתרון חלקי dt( A ) dt( A) 0 מפני ש S : R R 0 0 שאלה : נתונה העתקות ליניאריות S א S ב ו- 0 S אז בהכרח לא מתקיים: dim(im( )) dim(im( )) 03 dim(im( )) dim(im( )) 03 dim( Kr( )) dim( Kr( S)) 03 dim( Kr( )) dim( Kr( S)) 03 ג ד dim(im( )) dim( Kr( S)) Im( ) Kr( S) פתרון חלקי S 0 dim(im( )) dim(im( S)) dim( Kr( S)) dim(im( S)) 0 03 R dim(im( )) dim(im( S)) 03 בסיס אורתונורמלי במרחב מכפלה פנימית E מעל ( ) a x a x : E R a ( ) a E שאלה יהא לכל נגדיר טרנספורמציה ליניארית ע"י זו המכפלה הפנימית( אז בהכרח מתקיים: )כאשר ( a x) a x Im( a ) R Im( a ) R Im( ) Im( ) R א( ב( ג( ד( חד-חד ערכי Im( ) 0 a Im( a ) R אם ורק אם R הוא תת מרחב של Im( a פתרון חלקי ) a הגדרה של המכפלה הפנימית Im( ) Im( ) Im( ) Im( ) R או a 0 ולפי Im( ) 0 שאלה 4: ( ) 33 נתונה מטריצה א הוא לא ערך עצמי ב כך ש ( I) עם ריבוי אלגברי rank A אזי בהכרח מתקיים: A A M R

7 A ג ד עם ריבוי גיאומטרי A עם ריבוי גיאומטרי dim(im( AI)) פתרון חלקי rank( AI) המימד של המרחב העצמי ששייך A dim( Kr( A I)) 3 לערך עצמי שווה עם ריבוי גיאומטרי * I : U U שאלה 5: יהא U מרחב מכפלה פנימית ויהא p של אז הפולינום האופייני (x ( א ) ( x ב האופרטור הליניארי כך ש יכול להיות xx ( ) ( x 4) xx ( ) ג ד פתרון חלקי מודול של ערך עצמי של אופרטור אוניטרי שווה 0 הם לא ערכים עצמיים של ו- i i יכולים להיות ערכים עצמיים של ) ( x יכול להיות הפולינום האופייני של

MathType Commands 6 for Word

MathType Commands 6 for Word 0 אלגברה לינארית גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות תלמידים וטעויות נפוצות וחוזרות

קרא עוד

אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן ד"ר יפית מעין, מרכז אקדמי לב

אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן דר יפית מעין, מרכז אקדמי לב אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן ד"ר יפית מעין, מרכז אקדמי לב 1 א. תכונות וקטורים תוכן עניינים 1 1 1 2 2 2 3 3 4 4 5 5 5 6 7 8 9 9 10 10 11 11 12 12 וקטור שוויון וקטורים

קרא עוד

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0 פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות

קרא עוד

áñéñ åîéîã (ñéåí)

áñéñ åîéîã (ñéåí) מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא

קרא עוד

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63> משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת

קרא עוד

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור

קרא עוד

Untitled

Untitled 2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות

קרא עוד

מתמטיקה של מערכות

מתמטיקה של מערכות מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות

קרא עוד

67865 כלים מתמטיים 7 בינואר 2014 מרצה: מיכאל בן אור מתרגל: צור לוריא איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום

67865 כלים מתמטיים 7 בינואר 2014 מרצה: מיכאל בן אור מתרגל: צור לוריא איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום 67865 כלים מתמטיים 7 בינואר 2014 מרצה: מיכאל בן אור מתרגל: צור לוריא איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום דרך הערות יתקבלו בברכה nogarotman@gmailcom אהבתם?

קרא עוד

Microsoft Word - solutions.doc

Microsoft Word - solutions.doc תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה

קרא עוד

Microsoft Word - c_SimA_MoedA2006.doc

Microsoft Word - c_SimA_MoedA2006.doc מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ו,..006 מרצה: מתרגלת: גב' יעל כהן-סיגל. גב' ליאת לוונטל. משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות:. יש לענות על כל השאלות.. קראו

קרא עוד

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y !! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) tan ( a a z 0 a z s ds dt (רמז: cos d d ז) d ( ) d ( ) ח) ) מצא את הפתרונות המקיימי :. () 0 ( ). (). () 0 d ( ) d ( ) π. sin ln ) tan cos d cos d

קרא עוד

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם

קרא עוד

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של

קרא עוד

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,

קרא עוד

חשבון אינפיניטסימלי מתקדם 1

חשבון אינפיניטסימלי מתקדם 1 חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי

קרא עוד

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63> < 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות

קרא עוד

Limit

Limit פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:

קרא עוד

אנליזה מתקדמת

אנליזה מתקדמת א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:

קרא עוד

מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

מטלת מנחה (ממן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה

קרא עוד

Microsoft Word - vaidya.doc

Microsoft Word - vaidya.doc Preconditioners של וואידיה ברצוננו לפתור Axb כאשר המטריצה A היא מטריצה סימטרית חיובית (כל הערכים העצמיים שלה חיוביים) ודלילה (רוב הערכים בה הם אפס). דרך אחת לפתור מערכת לינארית כזאת היא הדרך הישירה: מציאת

קרא עוד

מספר נבחן / תשס"ג סמסטר א' מועד א' תאריך: שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר

מספר נבחן / תשסג סמסטר א' מועד א' תאריך: שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: דר אבי אללוף חומר עזר מספר נבחן 2002 2003 / תשס"ג סמסטר א' מועד א' תאריך: 29.1.03 שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר: אין שימוש במחשבון: מותר בבחינה 10 עמודים כולל עמוד

קרא עוד

Microsoft Word - אלגברה מעורב 2.doc

Microsoft Word - אלגברה מעורב 2.doc תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz

קרא עוד

משוואות דיפרנציאליות מסדר ראשון

משוואות דיפרנציאליות מסדר ראשון אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g

קרא עוד

PowerPoint Presentation

PowerPoint Presentation מה הם הגורמים שקובעים את רמת הפעילות הכלכלית, שער הריבית, רמת המחירים ורמת התעסוקה? הפעילות המשותפת במספר שווקים: פעילות ריאלית שוק הסחורות: CIGX-M עקומת IS (r,) שיווי משק ל פעילות מונטרית שוק הכספים:

קרא עוד

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר

קרא עוד

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשעח m 2 הוראות לנבחן: )1( הבחינה מו מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות

קרא עוד

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

ע 003 מרץ 10 מועד מיוחד פתרונות עפר בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר

קרא עוד

Microsoft Word - hedva 806-pitronot-2011.doc

Microsoft Word - hedva 806-pitronot-2011.doc ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשעט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

Tutorial 11

Tutorial 11 מבוא לשפת C תרגול 8: מערכים רב-ממדיים תרגילים בנושא מערכים ורקורסיה מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקנשטיין, איתן אביאור וסאהר אסמיר עבור הקורס "מבוא למדעי המחשב" נכתב ע"י טל כהן, עודכן ע"י

קרא עוד

Microsoft Word פרק 16 - פתרון משוואות רמה א

Microsoft Word פרק 16 - פתרון משוואות רמה א 0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

משוואות דפרנציאליות רגילות /ח

משוואות דפרנציאליות רגילות /ח qwertyuiopasdfghjklzxcvbnmqwerty Version 10 uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq משוואות דפרנציאליות רגילות /ח wertyuiopasdfghjklzxcvbnmqwertyui

קרא עוד

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

פונקציה מסדר ראשון;  הגדרת קו ישר: - הצגה עי ביטוי אלגברי וגרפי המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,

קרא עוד

PowerPoint Presentation

PowerPoint Presentation מבוא למדעי המחשב תירגול 6: כתובות ומצביעים 1 תוכנייה מצביעים מצביעים ומערכים, אריתמטיקה של מצביעים 2 3 מצביעים תזכורת- כתובות זיכרון הזיכרון כתובת התא #1000 #1004 #1008 ערך השמור בתא תא 10-4 לא מאותחל

קרא עוד

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים

קרא עוד

מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4

מבחן חוזר במכניקה 55 א יא יחללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4 מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19

קרא עוד

Homework Dry 3

Homework Dry 3 Homework Dry 3 Due date: Sunday, 9/06/2013 12:30 noon Teaching assistant in charge: Anastasia Braginsky Important: this semester the Q&A for the exercise will take place at a public forum only. To register

קרא עוד

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יחל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא

קרא עוד

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63> 1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $

קרא עוד

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

סדנת תכנות ב C/C++

סדנת תכנות ב   C/C++ פקולטה: מדעי הטבע מחלקה: מדעי המחשב שם הקורס: מבוא למחשבים ושפת C קוד הקורס: 2-7028510 תאריך בחינה: 15.2.2017 משך הבחינה: שעתיים שם המרצה: ד"ר אופיר פלא חומר עזר: פתוח שימוש במחשבון: לא הוראות כלליות:

קרא עוד

Slide 1

Slide 1 1 אובייקטים היום בתרגול: 2.)objects מחלקות )classes( ואובייקטים )מופעים, )fields( שדות המחלקה שיטות הכמסה )methods של מחלקה. ( class מחלקה - עד עכשיו השתמשנו בעיקר בטיפוסים מובנים ופונקציות המבצעות חישובים

קרא עוד

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, ,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא

קרא עוד

תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה

תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשעז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', 31.1.2017 מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבוני, דולב שרון הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה

קרא עוד

תרגיל 5-1

תרגיל 5-1 תרגיל 1 יחסי העדפה, פונקציות תועלת, עקומות אדישות וקווי תקציב כל השאלות להלן מתייחסות לצרכן שהעדפותיו מוגדרות על סלי צריכה של שני מוצרים. העדפות אלה הן רציונאליות (ז"א, מקיימות את תכונות השלמות והטרנזיטיביות).

קרא עוד

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180

קרא עוד

א"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)

אודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t) א"ודח ב גרבימ הרש רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא בחרמב ינש גוסמ יוק לרגטניא יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע ttt t r רשאכ ttt :עטקב תופיצר תורזגנ תולעב [ab]. יהי F תופיצר תורזגנ

קרא עוד

אי שוויונים ממעלה ראשונה לארבע יחידות

אי שוויונים ממעלה ראשונה לארבע יחידות אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.

קרא עוד

ת'' מדריך לבעלי תיבה קיימת במופ ומשתמשים ב Outlook 2003 או doc.2007 לפני שניגש להגדיר את תיבת המייל החדשה, נבצע גיבויי של המיילים ופנקס הכתובות מהחשבו

ת'' מדריך לבעלי תיבה קיימת במופ ומשתמשים ב Outlook 2003 או doc.2007 לפני שניגש להגדיר את תיבת המייל החדשה, נבצע גיבויי של המיילים ופנקס הכתובות מהחשבו ת'' מדריך לבעלי תיבה קיימת במופ ומשתמשים ב Outlook 2003 או doc.2007 לפני שניגש להגדיר את תיבת המייל החדשה, נבצע גיבויי של המיילים ופנקס הכתובות מהחשבון הקודם )ייצוא וייבוא כפי שמצוין מטה(. תהליך זה ימשוך

קרא עוד

Microsoft Word - 38

Microsoft Word - 38 08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60

קרא עוד

מבוא למדעי המחשב

מבוא למדעי המחשב מבוא למדעי המחשב שימוש במחסנית - מחשבון תוכן עניינים prefix כתיבת ביטויים ב-,infix ו- postfix postfix prefix,infix ביטויים ב- כתיבת ו- infix נוסח כתיבה ב- (operator אנו רגילים לכתוב ביטויים חשבוניים כדוגמת

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה - פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים

קרא עוד

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן

קרא עוד

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו אב תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,

קרא עוד

Microsoft Word - beayot tnua 3 pitronot.doc

Microsoft Word - beayot tnua 3 pitronot.doc ק( בעיות מילוליות - בעיות תנועה.7 פתרון: א. נסמן : קמ"ש קמ"ש מהירותו של הולך הרגל. מהירותו של רוכב האופניים. משך זמן הליכתו של הולך הרגל מקיבוץ א' לקיבוץ ב'. משך זמן רכיבתו של רוכב האופניים מקיבוץ א' לקיבוץ

קרא עוד

סיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב

סיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב סיכום אינפי 2 28 ביולי 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך..אינני לוקחת אחריות על מה שכתוב מטה. השימוש

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

שבוע 4 סינטקס של HACK ASSEMBLY ניתן להשתמש בשלושה אוגרים בלבד:,A,D,M כולם בעלי 16 ביטים. M אינו אוגר ישיר- הוא מסמן את האוגר של ה RAM שאנחנו מצביעים ע

שבוע 4 סינטקס של HACK ASSEMBLY ניתן להשתמש בשלושה אוגרים בלבד:,A,D,M כולם בעלי 16 ביטים. M אינו אוגר ישיר- הוא מסמן את האוגר של ה RAM שאנחנו מצביעים ע שבוע 4 סינטקס של HACK ASSEMBLY ניתן להשתמש בשלושה אוגרים בלבד:,A,D,M כולם בעלי 16 ביטים. M אינו אוגר ישיר- הוא מסמן את האוגר של ה RAM שאנחנו מצביעים עליו כרגע )A מצביע עליו(. יש שני סוגי פקודות, פקודת

קרא עוד

תוצאות סופיות מבחן אלק' פיקוד ובקרה קיץ 2014

תוצאות סופיות מבחן  אלק' פיקוד ובקרה קיץ  2014 תוצאות סופיות למערכות אלק' פיקוד ובקרה להנדסאים וטכנאים מועד קיץ תשע"ד 7/2014 פותר המבחן: מתי דוד למרות מאמצי לפתור נכון, יתכן ונפלו טעויות בפתרון, אשמח לקבל הערותיכם בדוא"ל : @hotmail.com ההצלחה שלי היא

קרא עוד

Microsoft Word - Questions Booklet Spring 2009

Microsoft Word - Questions Booklet Spring 2009 אלגוריתמים 1 חוברת תרגילים נא לשלוח כל הערה לגיל כהן במייל cohen@cs.technion.ac.il מפתח שאלות לפי נושאים 1, 45, 54, 55, 56, 76 5, 63 :BFS :DFS מיון טופולוגי: 17, 31, 32, 57, 67, 68 2, 25, 26, 28, 50 21,

קרא עוד

שעור 6

שעור 6 שעור 6 Open addressing אין רשימות מקושרות. (נניח שהאלמנטים מאוחסנים בטבלה עצמה, לחילופין קיים מצביע בהכנסה המתאימה לאלמנט אם אין שרשור). ב- addressing open הטבלה עלולה להימלא ב- factor α load תמיד. במקום

קרא עוד

Microsoft Word - two_variables3.doc

Microsoft Word - two_variables3.doc משימה שני תלמידים פתרו את מערכת המשוואות הבאה y 7 2y 2. שי פתר בשיטת השוואת מקדמים: I. 2x y 7 II. 2x 2y 2 דנה פתרה בשיטת הצבה: I. 2x y 7 II. 2x 2y 2 I. y = 7 2x II. 2x 2(7 2x) = 2 2x 4 + 4x = 2 6x 4 =

קרא עוד

סוג הבחינה: גמר לבתי ספר לטכנאים ולהנדסאים מדינת ישראל מועד הבחינה: אביב תשס"ט, 2009 משרד החינוך סמל השאלון: נספחים: א. נוסחאון במערכות תקשורת

סוג הבחינה: גמר לבתי ספר לטכנאים ולהנדסאים מדינת ישראל מועד הבחינה: אביב תשסט, 2009 משרד החינוך סמל השאלון: נספחים: א. נוסחאון במערכות תקשורת סוג הבחינה: גמר לבתי ספר לטכנאים ולהנדסאים מדינת ישראל מועד הבחינה: אביב תשס"ט, 2009 משרד החינוך סמל השאלון: 711913 נספחים: א. נוסחאון במערכות תקשורת ב' ההנחיות בשאלון זה מנוסחות בלשון זכר, אך מכוונות

קרא עוד

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y

קרא עוד

îáçï îúëåðú îñ' 1

îáçï îúëåðú îñ'  1 5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä

קרא עוד

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו

קרא עוד

Microsoft Word - ex04ans.docx

Microsoft Word - ex04ans.docx 1 אריאל סטולרמן סטטיסטיקה / תרגיל #4 קבוצה 03 Φ2. ההתפלגות הנורמלית (1) Φ2.2. Φ2.22. Φ1.5 1Φ1.5. Φ0. Φ5 1Φ5 1Φ4.417. Φ 1Φ 1Φ4.417. נתון: ~ 0,1 ( a )להלן חישוב ההסתברויות: 2.22 1.55 Φ1.55 Φ2.22 Φ1.55 1Φ2.22

קרא עוד

פתרונות לדף מס' 5

פתרונות לדף מס' 5 X הוכיחו כי קבוצה X סגורה אמ"מ פתוחה P נקודה כלשהי עלינו למצוא כך ש- X P X פתרון: תהא X קבוצה סגורה ניקח נניח בשלילה כי לא קיים כזה, ז"א לכל קיימת כך ש- X מכיוון ש- P P נסיק כי d P, P סגורה מתקיים P B

קרא עוד

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים כיתה

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים   כיתה שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים www.kefwithjeff.org כיתה Happy New Year 8 0 80 80 0 8 8 8 8 8 08 8 0 0 בכל שורה ובכל טור יש את המספרים עד כולל.

קרא עוד

תרגול 1

תרגול 1 תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת

קרא עוד

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3> האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשעב בחינת סיום, מועד א', הנחי אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך

קרא עוד

פתרונות לשאלות ממבחנים עוזי וישנה, 1996 השאלות לקוחות ממבחנים של פרופ' א. רואן. הפתרונות מוצגים באופן תמציתי, ויתכן שבמבחן כדאי להרחיב יותר. קובץ זה נ

פתרונות לשאלות ממבחנים עוזי וישנה, 1996 השאלות לקוחות ממבחנים של פרופ' א. רואן. הפתרונות מוצגים באופן תמציתי, ויתכן שבמבחן כדאי להרחיב יותר. קובץ זה נ פתרונות לשאלות ממבחנים עוזי וישנה, 1996 השאלות לקוחות ממבחנים של פרופ' א. רואן. הפתרונות מוצגים באופן תמציתי, ויתכן שבמבחן כדאי להרחיב יותר. קובץ זה נכתב במקור בתוכנת,Oren ותורגם באופן אוטומטי למחצה ל

קרא עוד

מבוא לאסמבלי

מבוא לאסמבלי 1 ברק גונן תוכנית שבנויה מחלקי קוד נפרדים המשולבים זה בזה מאפיינים: נקודת כניסה אחת נקודת יציאה אחת מבצעים פעולה מוגדרת נקראים פרוצדורות ברק גונן 2 קוד קצר יותר לא צריך לחזור על חלקי קוד שאלה למחשבה: האם

קרא עוד

Microsoft PowerPoint - Lecture1

Microsoft PowerPoint - Lecture1 Computer Organization and Programming ארגון ותכנו ת המחשב - את"מ הרצאה מבוא 2 שפה עילית מול שפ ת מ כונה שפה עילית language) (High level שפת מכונה Language) (Machine תכנית בשפ ה עיל ית (C, Pascal, ) תכנית

קרא עוד

פיסיקה 1 ב' מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א'

פיסיקה 1 ב' מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א' פיסיקה 1 ב' 203-1-1391 מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב 03.08.2017 משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א' - שאלות אמריקאיות (כל שאלה - 5 נק') - יש לסמן תשובה

קרא עוד

תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח

תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח תכנות דינמי פרק 6, סעיפים -6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח בסוף את הטוב ביותר. סכום חלקי sum) (subset הקלט: סדרה

קרא עוד

1 חשבון דיפרנציאלי ואינטגרלי II גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

1 חשבון דיפרנציאלי ואינטגרלי II גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל-   כתב ופתר גיא סלומון חשבון דיפרנציאלי ואינטגרלי II גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות

קרא עוד

חלק א' – הקדמה

חלק א' – הקדמה ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי

קרא עוד

שאלה 2. תכנות ב - CShell

שאלה 2. תכנות ב - CShell ביה"ס למדעי המחשב 4.2.2018 האקדמית נתניה מבחן מועד א' יסודות מערכות פתוחות סמסטר חורף, תשע"ח משך המבחן: שלוש וחצי שעות. יש לענות על כל השאלות. מותר השימוש בחומר עזר כלשהו, פרט למחשבים, (מחשבונים מותר).

קרא עוד

מבוא למדעי המחשב - חובלים

מבוא למדעי המחשב - חובלים אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב סמסטר ב' תשע"ב בחינת סיום, מועד ב',.02..9.7 מרצה: אורן וימן מתרגלים: נעמה טוויטו ועדו ניסנבוים מדריכי מעבדה: מחמוד שריף ומיקה עמית משך המבחן: שעתיים חומר

קרא עוד

HaredimZ2.indb

HaredimZ2.indb יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

קרא עוד

מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 אין להעביר את הנוסחאון לנבחן אחר נספח לשאלון: נוסחאו

מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשעה, 2015 אין להעביר את הנוסחאון לנבחן אחר נספח לשאלון: נוסחאו מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 אין להעביר את הנוסחאון לנבחן אחר נספח לשאלון: 815201 )32 עמודים(. 1 נוסחאות באלקטרוניקה תקבילית חישובי הגבר הגבר

קרא עוד

שימו לב! יש לענות על כל השאלות בתוך טופס הבחינה, מחברות טיוטא הולכות לגריסה. על השאלות יש לענות במקום המיועד אחרי כל שאלה. תאריך הבחינה: שם

שימו לב! יש לענות על כל השאלות בתוך טופס הבחינה, מחברות טיוטא הולכות לגריסה. על השאלות יש לענות במקום המיועד אחרי כל שאלה. תאריך הבחינה: שם שימו לב! יש לענות על כל השאלות בתוך טופס הבחינה, מחברות טיוטא הולכות לגריסה. על השאלות יש לענות במקום המיועד אחרי כל שאלה. תאריך הבחינה: 26.01.2018 שם המרצים: דר' אלה שגב, דר' יובל ביתן שם הקורס: מבוא

קרא עוד

Slide 1

Slide 1 מבוא לשפת C תירגול 10: מצביעים, מערכים ומחרוזות שבוע שעבר... מצביעים Call by reference 2 תוכנייה קשר מצביע-מערך )אריתמטיקה של מצביעים( העברת מערכים לפונקציה מחרוזות דוגמה 3 קשר מצביע-מערך 4 תזכורת: תמונת

קרא עוד

סז 002 נואר 07 מועד חורף פתרונות עפר

סז 002 נואר 07 מועד חורף פתרונות עפר הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות

קרא עוד

בס"ד וועדת משמעת מכללת חמדת הדרום מתי פונים לוועדת משמעת הפנייה לוועדת משמעת תעשה באחד )או יותר( מהמקרים הבאים: התנהגות בלתי ראויה כלפי עובד סגל או עו

בסד וועדת משמעת מכללת חמדת הדרום מתי פונים לוועדת משמעת הפנייה לוועדת משמעת תעשה באחד )או יותר( מהמקרים הבאים: התנהגות בלתי ראויה כלפי עובד סגל או עו בס"ד וועדת משמעת מכללת חמדת הדרום מתי פונים לוועדת משמעת הפנייה לוועדת משמעת תעשה באחד )או יותר( מהמקרים הבאים: התנהגות בלתי ראויה כלפי עובד סגל או עובד מנהל. חריגה מתקנון המכללה. פגיעה בטוהר בחינות/ עבודות

קרא עוד

Microsoft Word - בעיות הסתברות 1.doc

Microsoft Word - בעיות הסתברות 1.doc תרגול בעיות הסתברות. גולן מטיל פעמים קובייה הוגנת, מה ההסתברות שבכל אחת מהפעמים יקבל תוצאה שונה? () () () הילה קוראת ספר לפני השינה פעמים בשבוע, יוני סופר כבשים לפני השינה פעמים בשבוע, מה הסיכוי שהיום

קרא עוד