2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

גודל: px
התחל להופיע מהדף:

Download "2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק"

תמליל

1 דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) z + 8 למישור הפרבולואיד הוא גרף של פונקציה של המישור ואז ) ( f ( ) 6 f מכאן הפונקציה דיפרנציאבילית בכל נקודה בכל נקודה על הגרף )הפרבולואיד( קיים מישור משיק ומשוואתו: z f ( ) + f ( )( ) + f ( )( ) ( ) ) n f ( ) f ( ) ( 6 נמצא וקטור הנורמל P n ( 6) וקטור נורמל למישור המשיק הוא של המישור הנתון מתוך משוואתו: הנורמל מקבילים אחד לשני: מישור משיק מקביל למישור אם ורק אם וקטורי n n 6 6 ( 6 ) ( 6) ( f ( )) ( 4) מכאן מקבלים: נקודה השקה: שאלה נתונה פונקציה + a sin ( ) () f ( ) + b ( ) () מצאו עבור אילו ערכים של פרמטרים הפונקציה דיפרנציאבילית בראשית b מצאו קודם עבור אילו ערכים של הפרמטרים הפונקציה רציפה בראשית ז"א מתקיים lim f ( ) f () ( ) () a ()f נחשב את הגבול ערך הפונקציה: b lim f ( ) lim lim + a a sin sin ( ) () ( ) () ( ) () lim lim + + ( ) () ( ) () הגבול הראשון:

2 ( ) () ( ) () lim ( ) () sin lim a a lim sin + + כי + הגבול השני: מכאן ( ) () lim sin ( ) () lim f ( ) + כי f() f() b אם ורק אם f() הגבול שווה לערך הפונקציה b נמצא עבור אילו ערכים של פרמטר a קיימות הנגזרות החלקיות נמצא אותן לפי הגדרה: ( ) a sin( ) b + f ( ) f () ( ) + () ( ) f ( ) lim lim lim ( ) b () + a( ) sin() f ( ) f () () + ( ) f ( ) lim lim lim הנגזרות קיימות לכל ערך של פרמטר נמצא עבור אילו ערכים של פרמטר מתקיים: a f ( + + ) f () f () f () lim ( ) + ( ) נפתח את הגבול: f ( ) f () f () f () lim ( ) () ( ) + ( ) ( ) () ( ) + a( ) sin( ) ( ) + ( ) lim ( ) () ( ) + ( ) lim ( ) () ( ) ( ) + a( ) sin( ) (( ) + ( ) ) ( ) + ( ) ( ) ( ) + ( ) a( ) sin( ) ( ) lim? ( ) () (( ) ( ) ) ( ) ( ) + + a : נחשב את הגבול לאורך המסלולים ישרים: k

3 a( k) sin( ) ( k) lim ( ) lim ( ) (( ) + ( k) ) ( ) + ( k) ( ) () + k lim + lim ( ) ( ) () sin( ) ( ) ak k sin( ) k ( a ) ( ) ( k ) k + + ( + k ) + k k לכן אם a אם אז הגבולות לאורך המסלולים תלויים בפרמטר כל הגבולות לאורך המסלולים הישרים שווים ל- והגבול לכן הגבול לא קיים יכול להיות שווה ( ) () lim ( ) ( ) () a : ל- נתבונן בגבול כאשר a ו- ( ) sin( ) ( ) lim ( ) lim (( ) ( ) ) ( ) ( ) + + ( ) () ( ) () ( ) sin( ) lim ( ) () (( ) + ( ) ) ( ) + ( ) sin( ) lim ; ( ) ; ( ) + ( ) ( ) + ( ) ( ) (( ) + ( ) ) אם a ו- אזי ( ) sin() ( ) lim ( ) lim lim ( + ( ) ) + ( ) ( ) ( ) ( ) () a b כי התשובה הסופית: הפונקציה היא דיפרנציאבילית בראשית אם ורק אם שאלה נתונה פונקציה ) f ( ) arctan( ) + ln( + פונקציה מוגדרת באופן הבא: () () גזירות בכל הישר ומתקיים ( t) ( t) כאשר פונקציות u( t) f ( ( t) ( t)) u() מצאו () () 6 ut () Df ובכל הנקודות תחום ההגדרה הפונקציה הפונקציה מוגדרת בחצי המישור הפתוח: } {( ) גזירה ברציפות: f ( ) + + ( ) + דיפרנציאבילית בכל נקודה של תחום ההגדרה f ( ) f ( ) + ln( + ) + ( ) f ( ) נמצאת בתחום ההגדרה לכן דיפרנציאבילית בנקודה זאת D f לכן פונקציה פונקציות של הנ"ח רציפות ב- נקודה () M M ( () ()) בנוסף פונקציות t) ( t) ( גזירות בנקודה t לכן לפי כלל השרשרת מקבלים: u() f ( () ()) () + f ( () ()) () ( f ( () ()) f ( () ())) ( () ()) f () ( 6) f ( () ()) f ( r ())) r()

4 f () ( ) + t מוגדרת באופן הבא f נחשב את וקטור הגרדיאנט: () + ln( + ) 5 + ( ) f () ( f () f ()) (5 5) u () (5 5) ( 6) + ut () פונקציה ( ) ( ) u t f t t נמצא את הנגזרת: f ( ) שאלה 4 פונקציה הוכיחו את הטענה: אם נקודה פונקציה ) z f ( בנקודה גזירה ברציפות בכל המישור היא נקודת מקסימום מקומי של פונקציה() ( f ( )) אזי מישור משיק לגרף r t t t גזירה ut ( ) ( ) מקביל לציר ה- t לפי התנאי המספיק פונקציה דיפרנציאבילית בכל המישור; פונקציה לכל t מכאן לכל t ניתן ליישם את כלל השרשרת f ( ) u t f t t t f t t t f t t ( ) ( ) ( ) ( ) + ( ) r() t ut () מפני שנקודה ואז מקבלים: t היא בנקודה מקסימום מקומי של הנגזרת של הפונקציה בנקודה שווה ל- u() f ( ) + f ( ) f ( ) משוואת מישור המשיק לגרף פונקציה ) z f ( בנקודה )) ( f ( היא z f ( ) + f ( ) + f ( )( + ) f ( ) + f ( ) n ( f ( ) f ( ) ) ( f ( ) ) וקטור הנורמל של המישור s () וקטור הכיוון של ציר ה- הוא הווקטורים ניצבים: s n לכן המישור מקביל לציר ה- f ( ) g( z) f ( u v) שאלה 5 תהי נתונה פונקציה גזירה ברציפות בכל המישור מוגדרת באופן הבא: ( ) ) ( ) ( f f ( ) f ( ) פונקציה u v z g( z) f z ; ( ) א( הוכיחו כי פונקציה (z )g דיפרנציאבילית בנקודה 4

5 : z ( ) ב( מצאו את הקרוב הליניארי של (z )g א( לפי הנתון פונקציה סביב לנקודה דיפרנציאבילית בכל המישור פונקציה וקטורית f ( u v) גזירה לפי כל המשתנים כאשר r ( z) ( u( z) v( z)) z r ( z) ( u ( z) v ( z)) r z ( z) ( uz ( z) vz ( z)) z r ( z) ( u ( z) v ( z)) z z לכן בכל נקודה z) ( כאשר ניתן להיעזר בכלל השרשרת: g ( z) f ( r ( z)) r ( z) f u + f v f u z z z g ( z) f ( r ( z)) r ( z) f u + f v z z z z לכן פונקציה gz( z) f ( r ( z)) r z( z) f u + f v z z z ) ( ) מכאן הפונקציה רציפות כאשר g ( z) g ( z) gz לפי הנתון פונקציות z) ( מורכבת (z )g גזירה ברציפות בכל הנקודות האלה )וגם בנקודה דיפרנציאבילית בנקודה ב( פונקציה (z )g דיפרנציאבילית בנקודה ( ) לכן יש לה קרוב ליניארי בסביבת הנקודה: g( z) l( z) g( ) + g( )( ) + g ( )( ) + g( )( z + ) z נמצא את ערכים של הפונקציה ושל הנגזרות החלקיות שלה: g( ) f f ( ) f ( ) ( ) f ( ) f ( ) u g ( ) f u ( ) g ( ) f u ( ) + f v ( ) gz( ) f v( ) g( z) l( z) + ( ) 4( ) + ( z + ) v התשובה הסופית: 5

6 z g ( ) ( ) gt () שאלה 6 תהי נתונה פונקציה המשוואה: גזירה בכל הישר הוכיחו כי פונקציה פותרת את z z + z gt () שימו לב כי פונקציה היא של משתנה אחד והיא גזירה בכל הישר לכן היא דיפרנציאבילית בכל הישר ( )t גזירה לפי שני המשתנים בכל המישור ואז למציאת הנגזרות החלקיות של פונקציה פנימית פונקציה ) f ( ) g( ניתן להיעזר בכלל השרשרת: f g g ( ) ( ) ( ) ( ) z f g g ( ) ( ) ( ) ( ) ( ) לפי כלל גזירה של מכפלת הפונקציות: z g + g + g g ( ) ( ) ( ) ( ( )) ( ) ( ) z z ( ) ( ) g( ) + ( g( )) + + g( ) g ( ) ( ) g ( ) g( ) z g נציב את הנגזרות החלקיות של פונקציה ) ( ) ( באגף השמאל של המשוואה ונפתח אותו: z z + ( g( )) + ( g( ) + g( )) g g g z ( ) ( ) + ( ) z( ) z g מכאן פונקציה ) ( ) ( פותרת את המשוואה שאלה 7 )שאלה נוספת ללא ( () g אזי t הוכיחו את הטענה: אם פונקציות () gt פונקציה מוגדרת בכל ישר המספרים וגזירה בנקודה f g ( ) ( + ) נא לפתור דיפרנציאבילית בראשית הצירים 6

מתמטיקה של מערכות

מתמטיקה של מערכות מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות

קרא עוד

משוואות דיפרנציאליות מסדר ראשון

משוואות דיפרנציאליות מסדר ראשון אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g

קרא עוד

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63> משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת

קרא עוד

Microsoft Word - hedva 806-pitronot-2011.doc

Microsoft Word - hedva 806-pitronot-2011.doc ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על

קרא עוד

Limit

Limit פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:

קרא עוד

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים

קרא עוד

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y !! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) tan ( a a z 0 a z s ds dt (רמז: cos d d ז) d ( ) d ( ) ח) ) מצא את הפתרונות המקיימי :. () 0 ( ). (). () 0 d ( ) d ( ) π. sin ln ) tan cos d cos d

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

תרגול 1

תרגול 1 תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

Microsoft Word - shedva_2011

Microsoft Word - shedva_2011 שיטות דיפרנציאליות ואינטגרליות הפקולטה להנדסה אוניברסיטת תל אביב גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה

קרא עוד

Microsoft Word - 38

Microsoft Word - 38 08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60

קרא עוד

1 חשבון דיפרנציאלי ואינטגרלי II גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

1 חשבון דיפרנציאלי ואינטגרלי II גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל-   כתב ופתר גיא סלומון חשבון דיפרנציאלי ואינטגרלי II גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות

קרא עוד

אנליזה מתקדמת

אנליזה מתקדמת א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:

קרא עוד

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ . [,] ו 0 f() f() עמוד מתוך 6 ז. אולחא מס' הקורס 97 חדו''א הנ מכונות f ( ) ( )( )( ) f (,), תשובות I ) פונ' לכן קיים פתרון רציפה וגזירה בקטע כך ש 0 ) (? f ( ) +, ± ± 0.58 (, ),.58,.4 יש n פעמים להשתמש

קרא עוד

Untitled

Untitled 2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim

קרא עוד

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.

קרא עוד

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,

קרא עוד

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

עב 001 ינואר 12 מועד חורף פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית

קרא עוד

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...

קרא עוד

א"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)

אודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t) א"ודח ב גרבימ הרש רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא בחרמב ינש גוסמ יוק לרגטניא יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע ttt t r רשאכ ttt :עטקב תופיצר תורזגנ תולעב [ab]. יהי F תופיצר תורזגנ

קרא עוד

פתרונות לדף מס' 5

פתרונות לדף מס' 5 X הוכיחו כי קבוצה X סגורה אמ"מ פתוחה P נקודה כלשהי עלינו למצוא כך ש- X P X פתרון: תהא X קבוצה סגורה ניקח נניח בשלילה כי לא קיים כזה, ז"א לכל קיימת כך ש- X מכיוון ש- P P נסיק כי d P, P סגורה מתקיים P B

קרא עוד

מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

מטלת מנחה (ממן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה

קרא עוד

Microsoft Word - 28

Microsoft Word - 28 8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת

קרא עוד

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y

קרא עוד

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, ,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא

קרא עוד

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה יש לפתור את כל השאלות עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו

קרא עוד

מבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות

מבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות מבוא לאנליזה נומרית na191 Assignmnt 2 solution - Finding Roots of Nonlinar Equations y cos() שאלה 1 היכן נחתכים הגרפים של? y 3 1 ושל ממש פתרונות בעזרת שיטת החצייה ובעזרת Rgula Falsi )אין צורך לפתור אנליטית(

קרא עוד

. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים

. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4

קרא עוד

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

פונקציה מסדר ראשון;  הגדרת קו ישר: - הצגה עי ביטוי אלגברי וגרפי המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה

קרא עוד

áñéñ åîéîã (ñéåí)

áñéñ åîéîã (ñéåí) מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא

קרא עוד

תוצאות סופיות מבחן אלק' פיקוד ובקרה קיץ 2014

תוצאות סופיות מבחן  אלק' פיקוד ובקרה קיץ  2014 תוצאות סופיות למערכות אלק' פיקוד ובקרה להנדסאים וטכנאים מועד קיץ תשע"ד 7/2014 פותר המבחן: מתי דוד למרות מאמצי לפתור נכון, יתכן ונפלו טעויות בפתרון, אשמח לקבל הערותיכם בדוא"ל : @hotmail.com ההצלחה שלי היא

קרא עוד

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63>

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63> מתמטיקה א' לכלכלנים גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים

קרא עוד

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יחל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה - פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים

קרא עוד

Microsoft Word - 14

Microsoft Word - 14 9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את

קרא עוד

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

ע 003 מרץ 10 מועד מיוחד פתרונות עפר בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר

קרא עוד

PowerPoint Presentation

PowerPoint Presentation מה הם הגורמים שקובעים את רמת הפעילות הכלכלית, שער הריבית, רמת המחירים ורמת התעסוקה? הפעילות המשותפת במספר שווקים: פעילות ריאלית שוק הסחורות: CIGX-M עקומת IS (r,) שיווי משק ל פעילות מונטרית שוק הכספים:

קרא עוד

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,

קרא עוד

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות

קרא עוד

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63> 1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $

קרא עוד

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180

קרא עוד

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63> < 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות

קרא עוד

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3> האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע

קרא עוד

08-78-(2004)

08-78-(2004) שאלון 00 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן

קרא עוד

Microsoft Word - אלגברה מעורב 2.doc

Microsoft Word - אלגברה מעורב 2.doc תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz

קרא עוד

Microsoft Word - madar1.docx

Microsoft Word - madar1.docx משוואות דיפרנציאליות רגילות גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים וטעויות נפוצות

קרא עוד

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשעט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t

קרא עוד

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של

קרא עוד

מתמטיקה לכיתה ט פונקציה ריבועית

מתמטיקה לכיתה ט פונקציה ריבועית מתמטיקה לכיתה ט פונקציה ריבועית צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת

קרא עוד

סז 002 נואר 07 מועד חורף פתרונות עפר

סז 002 נואר 07 מועד חורף פתרונות עפר הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות

קרא עוד

אי שוויונים ממעלה ראשונה לארבע יחידות

אי שוויונים ממעלה ראשונה לארבע יחידות אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן

קרא עוד

חשבון אינפיניטסימלי מתקדם 1

חשבון אינפיניטסימלי מתקדם 1 חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי

קרא עוד

ðñôç 005 î

ðñôç 005 î ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,

קרא עוד

משוואות דפרנציאליות רגילות /ח

משוואות דפרנציאליות רגילות /ח qwertyuiopasdfghjklzxcvbnmqwerty Version 10 uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq משוואות דפרנציאליות רגילות /ח wertyuiopasdfghjklzxcvbnmqwertyui

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשעב בחינת סיום, מועד א', הנחי אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך

קרא עוד

תרגיל 5-1

תרגיל 5-1 תרגיל 1 יחסי העדפה, פונקציות תועלת, עקומות אדישות וקווי תקציב כל השאלות להלן מתייחסות לצרכן שהעדפותיו מוגדרות על סלי צריכה של שני מוצרים. העדפות אלה הן רציונאליות (ז"א, מקיימות את תכונות השלמות והטרנזיטיביות).

קרא עוד

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C 8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות

קרא עוד

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשעח m 2 הוראות לנבחן: )1( הבחינה מו מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות

קרא עוד

בחינה מספר 1

בחינה מספר 1 תוכן העניינים בחינה מספר 1 4 אלגברה: 4 חשבון דיפרנציאלי ואינטגרלי: בחינה מספר 6 אלגברה: 6 חשבון דיפרנציאלי ואינטגרלי: 7 בחינה מספר 3 8 אלגברה: 8 חשבון דיפרנציאלי ואינטגרלי: 9 בחינה מספר 41 אלגברה: 01 חשבון

קרא עוד

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשעז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', 31.1.2017 מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבוני, דולב שרון הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה

קרא עוד

Slide 1

Slide 1 מבוא לשפת C תירגול 8: פונקציות שבוע שעבר... מערכים מיזוג מערכים ממויינים מערכים דו-ממדיים מבוא לשפת סי - תירגול 8 2 תוכנייה פונקציות ברמת התקשורת הבין-אישית חלוקה לתתי בעיות בדומה למפתח של ספר קריאות גבוהה

קרא עוד

Slide 1

Slide 1 מבוא למדעי המחשב תירגול 4: משתנים בוליאניים ופונקציות מבוא למדעי המחשב מ' - תירגול 4 1 משתנים בוליאניים מבוא למדעי המחשב מ' - תירגול 4 2 ערכי אמת מבחינים בין שני ערכי אמת: true ו- false לכל מספר שלם ניתן

קרא עוד

מעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשע"ב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו

מעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשעב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים וסלילים )משרנים(. ראשית נראה כיצד משפיע כל אחד מהרכיבים הללו על המתח במעגל. נגד חוק אוהם: במהלך לימודיכם

קרא עוד

אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן ד"ר יפית מעין, מרכז אקדמי לב

אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן דר יפית מעין, מרכז אקדמי לב אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן ד"ר יפית מעין, מרכז אקדמי לב 1 א. תכונות וקטורים תוכן עניינים 1 1 1 2 2 2 3 3 4 4 5 5 5 6 7 8 9 9 10 10 11 11 12 12 וקטור שוויון וקטורים

קרא עוד

מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4

מבחן חוזר במכניקה 55 א יא יחללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4 מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19

קרא עוד

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל

קרא עוד

îáçï îúëåðú îñ' 1

îáçï îúëåðú îñ'  1 5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä

קרא עוד

סיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב

סיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב סיכום אינפי 2 28 ביולי 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך..אינני לוקחת אחריות על מה שכתוב מטה. השימוש

קרא עוד

MathType Commands 6 for Word

MathType Commands 6 for Word 0 אלגברה לינארית גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות תלמידים וטעויות נפוצות וחוזרות

קרא עוד

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0 פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשעב בחינת סיום, מועד א', הנחי אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך

קרא עוד

PowerPoint Presentation

PowerPoint Presentation מבוא למדעי המחשב תירגול 6: כתובות ומצביעים 1 תוכנייה מצביעים מצביעים ומערכים, אריתמטיקה של מצביעים 2 3 מצביעים תזכורת- כתובות זיכרון הזיכרון כתובת התא #1000 #1004 #1008 ערך השמור בתא תא 10-4 לא מאותחל

קרא עוד

Slide 1

Slide 1 מבוא למדעי המחשב תירגול 7: פונקציות 1 מה היה שבוע שעבר? לולאות מערכים מערכים דו-ממדיים 2 תוכנייה )call by value( פונקציות העברת פרמטרים ע"י ערך תחום הגדרה של משתנה מחסנית הקריאות 3 פונקציות 4 הגדרה של

קרא עוד

תוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום

תוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום תוכן העניינים: פרק 2 3 צמצומים ומימושים של פונקציות בוליאניות 2 צמצומים של פונקציות באמצעות מפת קרנו: 2 שאלות: 2 תשובות סופיות: 4 צמצום באמצעות שיטת 6:QM שאלות: 6 תשובות סופיות: 7 מימושים בעזרת פונקציות

קרא עוד

Microsoft Word - solutions.doc

Microsoft Word - solutions.doc תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי  שכונה מערבית, רח' הפסגה 17 כרמיאל דואל: עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30

קרא עוד

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0 22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור

קרא עוד

מבוא למדעי המחשב - חובלים

מבוא למדעי המחשב - חובלים אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב סמסטר ב' תשע"ב בחינת סיום, מועד ב',.02..9.7 מרצה: אורן וימן מתרגלים: נעמה טוויטו ועדו ניסנבוים מדריכי מעבדה: מחמוד שריף ומיקה עמית משך המבחן: שעתיים חומר

קרא עוד

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כץ, דר עופר נימן, דר סטוארט סמית, דר נתן רובין, גב' אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט

קרא עוד

תאוריות ויישומים במיקרו כלכלה

תאוריות ויישומים במיקרו כלכלה תאוריות ויישומים כלכלה במיקרו סמסטר א' דצמבר 006 4/0/06 מרצה : יוסי טובול - חדר שלו: חדר מס', בניין 7 tubul@mail.biu.ac.il שעות קבלה לפי תיאום מראש, לא בימי רביעי וחמישי מתרגלת: מיכל וובר הרצאות לקחת מהאתר

קרא עוד

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,65 באר-שבעISRAEL 058P.O.B. 65, BEER SHEVA 8 05, המזכירות האקדמית המרכז ללימודים קדם אקדמיים אלגברה - נוסחאות הכפל מקוצר גיליון תרגילים מס'

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי יחידות

קרא עוד

מבוא לתכנות ב- JAVA תרגול 7

מבוא לתכנות ב- JAVA  תרגול 7 מבוא לתכנות ב- JAVA תרגול 8 תזכורת - מבנה של פונקציה רקורסיבית.2 פונקציה רקורסיבית מורכבת משני חלקים עיקריים 1. תנאי עצירה: מקרה/מקרים פשוטים בהם התוצאה לא מצריכה קריאה רקורסיבית לחישוב צעד רקורסיבי: קריאה

קרא עוד

Microsoft Word פרק 16 - פתרון משוואות רמה א

Microsoft Word פרק 16 - פתרון משוואות רמה א 0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.

קרא עוד

שעור 6

שעור 6 שעור 6 Open addressing אין רשימות מקושרות. (נניח שהאלמנטים מאוחסנים בטבלה עצמה, לחילופין קיים מצביע בהכנסה המתאימה לאלמנט אם אין שרשור). ב- addressing open הטבלה עלולה להימלא ב- factor α load תמיד. במקום

קרא עוד

חלק א' – הקדמה

חלק א' – הקדמה ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי

קרא עוד

Microsoft Word B

Microsoft Word B מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: 1. ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב

קרא עוד

Microsoft Word - Sol.7 - Determining Orders of Reactions.doc

Microsoft Word - Sol.7 - Determining Orders of Reactions.doc פיסיקלית א' כימיה סמסטר אביב, תשע"א ( פיתרון מס' 7: תרגיל (6963 6963 שיטות לקביעת סדר של ריאקציות (שאלה מבחינה מבחן סופי 8, מועד א' α β =v (חוק קצב חזקתי, וננסה א. כרגיל, נניח שקיימת משוואת קצב מן הצורה

קרא עוד

Slide 1

Slide 1 בעיית התוכנית הגדולה C תוכנית גדולה המבצעת פעולות רבות, יכולה להפוך לקשה מאוד לניהול אם נשתמש רק בכלים שלמדנו עד כה: 1. קשה לכתוב ולנפות את התוכנית,. קשה להבין אותה, 3. קשה לתחזק ולתקן אותה, 4. קשה להוסיף

קרא עוד