מתמטיקה לכיתה ט פונקציה ריבועית

גודל: px
התחל להופיע מהדף:

Download "מתמטיקה לכיתה ט פונקציה ריבועית"

תמליל

1 מתמטיקה לכיתה ט פונקציה ריבועית

2 צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת אפרת, ד"ר אילנה ארנון, ד"ר שושנה גלעד, ד"ר מורין הוך, ד"ר ילנה זריא, הלית חפר, דורית כהן, טובי מגדל, רותי מירון, ד"ר איבי מכמנדרוב, ילנה נפתלייב, ד"ר מיכל סוקניק, ענת פלדמן, אנטולי קורופטוב, הגר רובינק. קרא והעיר: דוד זלצר עריכה לשונית: חוה בן זקן, מיכל פרנקל, יעל רגב צוות גרפיקה: שירה בכר, איילת גוטרמן, לאה גלס, ישי יגיל ריכוז הפעלה: ד"ר אלכס אוליצין מזכירות הצוות: לילך רון, סוהא חאג' יחיא עיצוב גרפי: ביצועים עיבודי מחשב בע"מ הבאה לדפוס: גדי נחמיאס הוצאה לאור: המרכז לטכנולוגיה חינוכית הודפס בשנת 2009 תודתנו נתונה לבתי הספר שהשתתפו בניסוי הסדרה: "אהבת ישראל בנים" - ירושלים, "חט"ב אלון" - רעננה, "אמירים" - כפר ורדים, "מקיף אפרים קציר" - חולון, "מקיף שחר מעין" - עין החורש, "עירוני משה שרת" - נתניה. כל הזכויות שמורות למטח - המרכז לטכנולוגיה חינוכית קריית משה רואו, רח קלאוזנר 6 תל אביב, ת ד 3953, מיקוד 6394 צוות המתמטיקה טל , דוא אתר באינטרנט מוקד תמיכה טלפוני של מטח בשעות 8:00-8:00 המספק תמיכה מקצועית: זכויות הקניין הרוחני, לרבות זכויות היוצרים והזכות המוסרית של היוצר/ים בחוברת זו מוגנות. אין לשכפל, להעתיק, לסכם, לצלם, להקליט, לתרגם, לאחסן במאגר מידע, לשדר או לקלוט בכל דרך או בכל אמצעי אלקטרוני, אופטי, מכני או אחר, כל חלק שהוא מחוברת זו. כמו כן, אין לעשות שימוש מסחרי כלשהו בחוברת זו, בכולה או בחלקים ממנה, אלא אך ורק לאחר קבלת רשות מפורשת בכתב ממטח והמרכז לטכנולוגיה חינוכית(.

3 תוכן העניינים א. מהי פונקציה ריבועית? ב. נקודות החיתוך עם הצירים; חיוביות ושליליות ג. מאפייני הפרבולה ד. הפונקציה הריבועית f() = a 2 + c ה. תרגול נוסף תשובות סמלים לציון פעילויות מסוגים שונים: חיזוק, הרחבה, אתגר, דיון

4 פונקציה ריבועית א. מהי פונקציה ריבועית? מה נלמד? מהי פונקציה? - חזרה והרחבה מהי פונקציה ריבועית? הפונקציה הריבועית f() = 2 גרף של פונקציה ריבועית - פרבולה מאפייני הפרבולה. מהי פונקציה? - חזרה והרחבה בכל סעיף סרטטו מערכת צירים וסמנו בה את שתי הנקודות הנתונות. סרטטו גרף של פונקציה שעובר דרך שתי הנקודות שסימנתם. אם אי אפשר - הסבירו מדוע. בכל סעיף שהצלחתם לסרטט גרף של פונקציה, סרטטו גרף של פונקציה נוספת. ) B(8, A(-2, ) א 0) D(3, C(3, 7) ב 3) F(7, E(0, ) ג דיון תזכורת: שיעורי נקודה מסמנים בזוג סדור - ),(: שיעור ה משמאל ושיעור ה מימין. 2 בכל סעיף כתבו אם הגרף מייצג פונקציה. אם הגרף אינו מייצג פונקציה, הסבירו מדוע. א ב ג ד פונקציה ריבועית מהי פונקציה ריבועית? 3 א. סרטטו מערכת צירים. סרטטו בה גרף של פונקציה, שהיא קודם עולה ואחר כך יורדת, והגרף בנוי רק מקווים עקומים. ב. סמנו על הגרף שלכם שתי נקודות שיש להן אותו ערך של. רשמו את שיעורי הנקודות שסימנתם )אפשר בערך(. ג. עבור אילו ערכים של ערכי הפונקציה שלכם חיוביים? עבור אילו ערכים של ערכי הפונקציה שלכם שליליים? ד. האם גרף הפונקציה חותך את ציר X? אם כן, באילו נקודות? האם גרף הפונקציה חותך את ציר Y? אם כן, באילו נקודות? תזכורת אוסף הקווים הבסיסיים המשמשים לבניית גרפים: קו עולה ישר קו קבוע קו יורד ישר קו עולה עקום קו עולה עקום קו יורד עקום קו יורד עקום 4

5 מהי פונקציה ריבועית? 4 לפניכם פונקציות שונות. אילו מהפונקציות אינן קוויות? f() = 2 - ה ) - ( () = ג א t() = g() = ו ) - 2( k() = ד ב m() = ( + 2) - 2 פונקציה ריבועית אם אפשר לכתוב ביטוי של פונקציה בצורה a, b, c( f() = a 2 + b + c מספרים כלשהם ו 0,)a אז הפונקציה היא ריבועית. דוגמה הפונקציה - 2 () = 2 + היא ריבועית. אפשר להציג אותה בצורה: )a = b = 2 c = -( () = (-) דוגמה 2 הפונקציה g() = 2 היא ריבועית. אפשר להציג אותה בצורה: )a = b = 0 c = 0( g() = דוגמה 3 הפונקציה + 2 f() = אינה ריבועית, כי אינו מופיע במעלה שנייה. דיון 5 א. חזרו לפונקציות שבמשימה הקודמת. אילו מהן פונקציות ריבועיות? ב. מדוע לדעתכם בהגדרה של הפונקציה הריבועית, המופיעה במסגרת למעלה, כתוב ש 0 a? 6 בכל סעיף נתונה פונקציה ריבועית. כתבו את הפונקציה בצורה.a 2 + b + c כתבו מהם.a, b, c ג א ב א ב ג ד פונקציה ריבועית מהי פונקציה ריבועית? f() = f() = 2 f() = (3 - )(7 - ) f() = (2-7) f() = (5 - )(5 + ) f() = 2( + 3)( - ) ד f() = 3 2 ה f() = ז f() = 2 + f() = ו f() = 2-7 ח f() = - 2 בכל סעיף נתונה פונקציה ריבועית. 7 כתבו את הפונקציה בצורה.a 2 + b + c כתבו מהם.a, b, c ה 7) - ( f() = 2 - ו 8) 2 - ( f() = ז f() = ח f() =

6 h() 9 8 נתונה הפונקציה הריבועית.h() = 2 א. כתבו אותה בצורה.a 2 + b + c כתבו מהם.a, b, c ב. העתיקו את טבלת הערכים ומלאו אותה. ג. סרטטו מערכת צירים מתאימה וסמנו בה את הנקודות שרשמתם בטבלה. ד. בחרו מבין הנקודות שסימנתם זוגות של נקודות, ששיעורי ה שלהן הם מספרים נגדיים. האם הנקודות האלה סימטריות ביחס לציר Y? הסבירו. ה. לפני שתסרטטו את גרף הפונקציה, ענו: האם הוא קו ישר? הסבירו את תשובתכם. ו. סרטטו דרך הנקודות שסימנתם סקיצה של גרף, שלדעתכם יכול לייצג את הפונקציה.h( ) = 2 ז. תארו את תכונותיו של גרף הפונקציה.h() = 2 הגרף של כל פונקציה ריבועית הוא פ ר ב ול ה. דוגמאות כל פרבולה מורכבת משני קווים עקומים בסיסיים: קו יורד וקו עולה. תזכורת: אם לצורה קיים קו, שכאשר מקפלים את הצורה לאורכו שני חלקי הצורה מתלכדים בדיוק, הקו הזה נקרא ציר סימטרייה של הצורה. לכל פרבולה יש ציר סימטרייה. למשל, בפרבולה h() = 2 ציר הסימטרייה הוא ציר Y. 5 9 נתונים ביטוי של פונקציה ריבועית והפרבולה המתאימה: h() = א. תארו את אפיוני הפרבולה. השתמשו במושגים: עולה, יורד, ציר סימטרייה וכדומה. ב. לפרבולה של הפונקציה h() יש שתי נקודות חיתוך עם ציר X. מהם שיעורי הנקודות? בדקו על ידי הצבה בביטוי. לפרבולה של הפונקציה h() יש נקודת חיתוך אחת עם ציר Y. מהם שיעורי הנקודה? בדקו על ידי הצבה בביטוי. ג. ענו לפי הגרף: עבור אילו ערכים של ערכי h() חיוביים? שליליים? 0? ד. מצאו בגרף את נקודת המקסימום - הנקודה שבה ערך הפונקציה h() הוא הגדול ביותר. מהו הערך של,h() ומהו הערך של בנקודה שמצאתם? ה. ענו לפי הגרף: עבור אילו ערכים של הפונקציה h() יורדת? עבור אילו ערכים היא עולה? ו. מה הקשר בין ציר הסימטרייה של הפרבולה לבין נקודת המקסימום שלה? פונקציה ריבועית מהי פונקציה ריבועית? דיון 6

7 לכל גרף של פונקציה ריבועית )פרבולה( יש נקודת מקסימום או נקודת מינימום: A הנקודה שבה אפיון הגרף משתנה מעולה ליורד היא נקודת המקסימום של הפונקציה. דוגמה הנקודה A בסרטוט היא נקודת המקסימום. בנקודה זו אפיון הגרף משתנה מעולה ליורד. הנקודה שבה אפיון הגרף משתנה מיורד לעולה היא B נקודת המינימום של הפונקציה. דוגמה הנקודה B בסרטוט היא נקודת המינימום. בנקודה זו אפיון הגרף משתנה מיורד לעולה. נקודת המינימום או המקסימום של הפרבולה נקראת קדקוד הפרבולה. ציר הסימטרייה של הפרבולה עובר דרך הקדקוד שלה. 0 לפניכם חמש פרבולות. לאילו מהן יש נקודת מינימום? לאילו מהן יש נקודת מקסימום? א ב ג ד ה א. סרטטו סקיצה של גרף פונקציה שיש לו נקודת מינימום. סמנו את הנקודה והסבירו מדוע היא נקודת המינימום. ב. סרטטו סקיצה של גרף פונקציה שיש לו נקודת מקסימום. סמנו את הנקודה והסבירו מדוע היא נקודת המקסימום. ג. סרטטו סקיצה של גרף פונקציה שיש לו גם נקודת מינימום וגם נקודת מקסימום. סמנו את הנקודות והסבירו. )רמז: הפונקציה אינה ריבועית.( פונקציה ריבועית מהי פונקציה ריבועית? 7

8 2 לפניכם סרטוט של גרף הפונקציה. f() = 2 א. מהם שיעורי הקדקוד של הפרבולה? ב. מהו ציר הסימטרייה של הפרבולה?f() = 2 ג. מצאו f(-3). f)- 2 (, f) (, f(0), f(3), 2 ד. מצאו ערכים של שעבורם = 9.f() פתרו את המשוואה = 9 2. ה. פתרו את המשוואה 9- = 2. האם יש ערכים של שעבורם 9- =?f() ו. מצאו ערכים של שעבורם = 0.f() פתרו את המשוואה = 0 2. ז. בכל אחד מהסעיפים ד-ו מופיעות שתי שאלות. מה הקשר בין שתי השאלות בכל סעיף? משימה לסיכום 3 א. מהי פונקציה ריבועית? כתבו שלוש דוגמאות לביטויים אלגבריים המייצגים פונקציות ריבועיות. ב. מהי פרבולה? כתבו מאפיינים של פרבולה. ג. מה הקשר בין קדקוד הפרבולה לבין ציר הסימטרייה שלה? משימות נוספות 4 בכל סעיף נתונה פונקציה ריבועית. כתבו כל פונקציה בצורה.a 2 + b + c כתבו מהם,a.,b c f() = ד f() = ג f() = -2 2 ב f() = א h() 5 נתונה הפונקציה הריבועית.g() = - 2 א. כתבו אותה בצורה.a 2 + b + c כתבו מהם.a, b, c -9 ב. העתיקו את טבלת הערכים ומלאו אותה. ג. סרטטו מערכת צירים מתאימה וסמנו בה את הנקודות שרשמתם בטבלה. ד. בחרו מבין הנקודות שסימנתם זוגות של נקודות, ששיעורי ה שלהן הם מספרים נגדיים. האם הנקודות האלה סימטריות ביחס לציר Y? הסבירו. ה. לפני שתסרטטו את גרף הפונקציה, ענו: האם הוא קו ישר? הסבירו את תשובתכם. ו. סרטטו דרך הנקודות שסימנתם סקיצה של גרף, שלדעתכם יכול לייצג את הפונקציה.g() = - 2 ז. תארו את תכונותיו של גרף הפונקציה.g() = א. סרטטו סקיצה של פרבולה שיש לה נקודת מקסימום, והיא חותכת את ציר בשתי נקודות. ב. סרטטו סקיצה של פרבולה נוספת שיש לה נקודת מקסימום, והיא חותכת את ציר בשתי נקודות. פונקציה ריבועית מהי פונקציה ריבועית? 8

9 ב. נקודות החיתוך עם הצירים; חיוביות ושליליות מה נלמד? פתרון משוואות = 0 f() )חזרה( נקודות החיתוך עם הצירים נקודות האפס חיוביות ושליליות של פונקציה. פתרון משוואות = 0 f() )חזרה( א. השלימו שלושה תרגילים שונים: = 0 ב. המכפלה של שני מספרים היא אפס. מה אפשר להגיד על המספרים? ג. פתרו את המשוואות. = 0 5 ( - 2)( + 7) = = -23(6 + ) 3 דיון דוגמה = 0 5) + 2)(5 ( - האגף השמאלי של משוואה זו הוא מכפלה של שני ביטויים אלגבריים. האגף הימני של המשוואה הוא 0. מכפלה שווה לאפס, אם אחד מהגורמים שווה לאפס או ששני הגורמים שווים לאפס: ( - 2)(5 + 5) = 0-2 = = 0 כל מספר שמ א פ ס את אחד הגורמים הוא אחד הפתרונות של המשוואה: = 2 מ א פ ס את הגורם (2 - ) )5 + 5( מ א פ ס את הגורם = -3 לכן הפתרונות של המשוואה הם שני המספרים האלה, ורק הם: 3-2 פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות בדיקה על ידי הצבה: = 2 = 0 = -3 (2-2)( ) = 0 5) + (-3) 2)(5 (-3 - פתרו את המשוואות. 2 א = 0 3) - 8)( ( + ד = 0 ) - )(2 ( - ז = 0 2 5) - ( ב = 0 27) - 3( ה = 0 4) + (2 ח = 0 2 2) (6 + ג = 0 ) + 2)( (4 - ו = ט = 0 2) - )( - -(3 פתרו כל משוואה וכתבו כמה פתרונות יש לה. הסבירו. 3 = א = ב = ג = ד 9

10 B A נקודות החיתוך של גרף הפונקציה עם הצירים 4 לפניכם סרטוט של קו ישר שעליו מסומנות שתי נקודות: A ו B. א. באיזו משתי הנקודות הקו חותך את ציר X? ב. באיזו משתי הנקודות הקו חותך את ציר Y? ג. התאימו לנקודות A ו B את שיעורי הנקודות האלה: )6 -,0( )0,3( ד. הסבירו איך קבעתם מהם השיעורים של כל נקודה. ה. מהם השיעורים של נקודת ראשית הצירים? C B A לפניכם סרטוט של פרבולה שעליה מסומנות שלוש נקודות: B A, ו C. 5 א. באילו משלוש הנקודות הפרבולה חותכת את ציר X? ב. באילו משלוש הנקודות הפרבולה חותכת את ציר Y? )0,2( )0,8-( ג. התאימו לנקודות B A, ו C את שיעורי הנקודות האלה: )6-,0( ד. הסבירו איך קבעתם מהם השיעורים של כל נקודה. נקודות החיתוך של גרף הפונקציה הקווית עם הצירים - חזרה שיעור ה של נקודת החיתוך עם ציר X הוא הפתרון של המשוואה = 0 f() שיעור ה של נקודת החיתוך עם ציר Y הוא )0(f )ערך הפונקציה עבור = 0 (. דוגמה g() = נקודת החיתוך עם ציר X: הפתרון של המשוואה = הוא -2.5 =. נקודת החיתוך של גרף הפונקציה עם ציר X היא )0,2.5-(. נקודת החיתוך עם ציר Y: ערך הפונקציה עבור = 0 הוא = = f(0) נקודת החיתוך של גרף הפונקציה עם ציר Y היא )5,0(. 6 נתונים גרף וביטוי של פונקציה ריבועית: ) f() = (2-6)( + א. העתיקו את הגרף )אפשר בערך(. ב. נקודות החיתוך עם ציר X: כמה נקודות חיתוך עם ציר X יש לפונקציה הזו? סמנו אותן. מצאו את שיעוריהן בעזרת הביטוי של הפונקציה וכתבו אותם בגרף. בדקו על ידי הצבה. ג. נקודת החיתוך עם ציר Y: סמנו את נקודת החיתוך של הפרבולה עם ציר Y. מצאו את שיעוריה בעזרת הביטוי של הפונקציה וכתבו אותם בגרף. בדקו על ידי הצבה. פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות דיון 0

11 נקודות החיתוך של הפרבולה עם הצירים; נקודות האפס של הפונקציה נקודות החיתוך עם ציר X: בנקודות החיתוך של הפרבולה עם ציר X שיעור ה שווה ל 0. נקודות אלה נקראות נקודות האפס של הפונקציה. ערכי של נקודות האפס הם הפתרון של המשוואה = 0 f(). נקודת החיתוך עם ציר Y: בנקודת החיתוך של הפרבולה עם ציר Y שיעור ה שווה ל 0. ערך ה של הנקודה הוא (0)f. דוגמה 2) - 2)(3 f() = ( - כדי למצוא את נקודות האפס נפתור את המשוואה = 0 (2-3)(2 ). - האגף השמאלי של המשוואה הזאת הוא מכפלה של שני גורמים: )2 - ( ו )2-3(..) - 2( מ א פ ס את הגורם = 2.)3-2( מ א פ ס את הגורם = 4 לכן הפתרונות של המשוואה הם 2 ו 4. מסקנה: נקודות האפס של הפונקציה 2) - 2)(3 f() = ( - הן 0( )2, 0(.)4, כדי למצוא את נקודת החיתוך עם ציר Y נציב = 0 בביטוי של הפונקציה: פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות (-5, 0) f(0) = (0-2) (3 0-2) = (-2) (-2) = 24 מסקנה: נקודת החיתוך של גרף הפונקציה (2-3)(2 f() = ) - עם ציר Y היא 24(.)0, 7 לפניכם גרף הפונקציה הריבועית 7) + 2)(.f() = ( - א. נקודות האפס של הפונקציה: פתרו את המשוואה = 0 (7 + )(2 ). - בדקו את הפתרון על ידי הצבה. בכמה נקודות הפרבולה חותכת את ציר X? מה הקשר בין הפתרון של המשוואה לבין נקודות החיתוך של הפרבולה עם ציר X? כתבו את שיעורי נקודות האפס של הפונקציה. ב. הפרבולה חותכת את ציר Y בנקודה אחת. היעזרו בביטוי וכתבו את שיעורי הנקודה הזאת. שימו לב: נקודות החיתוך של שני קווים הן הנקודות המשותפות לשני הקווים האלה. גם נקודה שבה גרף הפונקציה נוגע באחד הצירים נקראת נקודת חיתוך עם הציר. למשל, נקודת החיתוך של גרף הפונקציה (5 2 + ) f() = עם ציר X היא (0,5-).

12 8 א. האם הפונקציה (2 2 - ) f() = היא פונקציה ריבועית? הסבירו. ב. נקודות האפס של הפונקציה: פתרו את המשוואה = 0 2 (2 - ). בדקו את הפתרון על ידי הצבה. בכמה נקודות הפרבולה חותכת את ציר X? מה הקשר בין הפתרון של המשוואה לבין נקודת החיתוך של הפרבולה עם ציר X? כתבו את שיעורי נקודת האפס של הפונקציה. ג. הפרבולה חותכת את ציר Y בנקודה אחת. היעזרו בביטוי וכתבו את שיעורי הנקודה הזאת. 9 א. סרטטו סקיצה של פרבולה שאינה חותכת את ציר X כלל. דיון ב. האם לפרבולה שסרטטתם יש נקודת מינימום או נקודת מקסימום? ג. בכמה נקודות הפרבולה שסרטטתם חותכת את ציר Y? 0 בכל סעיף: העתיקו את הגרף )אפשר בערך(. כתבו כמה נקודות חיתוך עם ציר X יש לפונקציה. סמנו אותן. מצאו את שיעוריהן בעזרת הביטוי של הפונקציה וכתבו אותם בגרף. f() = ( + 3)( - 5) g() = - 2 פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות א ב בדקו על ידי הצבה. כתבו כמה נקודות חיתוך עם ציר Y יש לפונקציה. סמנו אותן. מצאו את שיעוריהן בעזרת הביטוי של הפונקציה וכתבו אותם בגרף. בדקו על ידי הצבה. ג 3) + 4)( h() = - ( - ה 3) ( m() = ד 3) 2 - ( h() = ו f() =

13 דיון ענו על השאלות. הדגימו את תשובותיכם על ידי סקיצות. א. כמה נקודות חיתוך עם ציר X יכולות להיות לפרבולה? ב. כמה נקודות חיתוך עם ציר Y יכולות להיות לפרבולה? ג. הסבירו מדוע הפרבולה אינה יכולה לחתוך את ציר Y ביותר מנקודה אחת. פונקציה ריבועית - מספר נקודות החיתוך של פרבולה עם הצירים בכל פרבולה )גרף של פונקציה ריבועית( - מספר נקודות החיתוך עם ציר X )נקודות האפס( יכול להיות 2, או 0. יש רק נקודת חיתוך אחת עם ציר Y. g() = ) 2 - ( f() = דוגמה 3 ) h() = ( + 2)(4 - דוגמה 2 דוגמה פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות לפונקציה אין נקודות אפס. הגרף אינו חותך את ציר X. נקודת החיתוך היחידה של הפונקציה עם ציר Y היא 3(.)0, נקודת האפס היחידה של הפונקציה היא )0,5(. הגרף חותך את ציר X בנקודה זו. נקודת החיתוך היחידה של הפונקציה עם ציר Y היא 25(.)0, שתי נקודות האפס של הפונקציה הן 0( )-2, ו ) 0.)4, הגרף חותך את ציר X בשתי הנקודות הללו. נקודת החיתוך היחידה של הפונקציה עם ציר Y היא 8(.)0, ד. מיינו את הפונקציות הבאות לשלוש קבוצות: פונקציות שיש להן שתי נקודות אפס. 2 פונקציות שיש להן נקודת אפס אחת. 3 פונקציות שאין להן נקודות אפס כלל. אם לפונקציה יש נקודות אפס, רשמו את שיעוריהן. f() = ( + 8)( - 8) k() = 2-25 t() = 00-2 g() = ( + 8) 2 m() = ( + 0) s() = (7 - ) h() = p() = - 2 r() = (7 - ) 2 3

14 2 ענו על השאלות. הדגימו את תשובותיכם על ידי סקיצות. א. כמה נקודות חיתוך עם ציר X יכולות להיות לגרף של פונקציה קווית? ב. כמה נקודות חיתוך עם ציר Y יכולות להיות לפונקציה קווית? פונקציה קווית - מספר נקודות החיתוך של הגרף עם הצירים בכל גרף של פונקציה קווית - מספר נקודות החיתוך עם ציר X )נקודות האפס( יכול להיות 0, או אינסוף. יש רק נקודת חיתוך אחת עם ציר Y. f() = 0-6 = f() דוגמה 3 דוגמה 2 f() = -7-7 דוגמה נקודת האפס היחידה של לפונקציה אין נקודות אפס. לפונקציה יש אינסוף הגרף אינו חותך את ציר X. נקודות אפס. הפונקציה היא 0( )-,. הגרף מתלכד עם ציר X. נקודת החיתוך היחידה של הפונקציה עם ציר Y היא 0(.)0, 3) + 3)( f() = ( - א 7) 2 - ( f() = ב פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות ג ד הגרף חותך את ציר X בנקודה זו. נקודת החיתוך היחידה נקודת החיתוך היחידה של הפונקציה עם ציר Y של הפונקציה עם ציר Y היא -6(.)0, היא -7(.)0, בכל סעיף: 3 כתבו אם הפונקציה הנתונה היא ריבועית או קווית. כתבו כמה נקודות חיתוך יש לגרף של הפונקציה f() עם ציר X. כתבו את שיעורי נקודות האפס. כתבו כמה נקודות חיתוך יש לגרף של הפונקציה f() עם ציר Y. כתבו את שיעורי הנקודות. f() = -4-2 ה = 3 f() f() = 3( + 2)( + 2) ו f() = -( - 4)(4 - ) 4

15 4 בכל סעיף נתונה הפונקציה f() בשני ייצוגים: האחד - ייצוג אלגברי, והאחר - גרף או טבלה. בכל סעיף: כתבו אם הפונקציה הנתונה היא ריבועית או קווית. מצאו את הפתרונות של המשוואה = 0.f() בדקו את הפתרונות על ידי הצבה. כתבו מהן נקודות האפס של הפונקציה. כתבו מהי נקודת החיתוך של הפונקציה עם ציר Y. 4) - 2)( f() = -( + א = 2.5 f() ג f() = ה -2 4 ) 2 f() = (3 - ב 25) - ( f() = ו ) f() = ( - 5)(2 - ד פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות f()

16 חיוביות ושליליות של פונקציה 5 בסרטוט שלפניכם נתון גרף של טמפרטורה שנמדדה במשך יממה אחת בהלסינקי זמן )שעות( פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות ענו לפי הגרף: טמפרטורה )מעלות( א. מה הייתה הטמפרטורה בהלסינקי בשעה 03:00? בשעה 5:00? בשעה 22:00? ב. באילו שעות הייתה הטמפרטורה 3 c-? 5 c? 0 c? ג. באילו פרקי זמן הייתה הטמפרטורה חיובית? באילו היא הייתה שלילית? ד. באילו פרקי זמן עלתה הטמפרטורה? באילו היא ירדה? ה. מה היה טווח הטמפרטורות בפרק הזמן שבין השעה 07:00 לשעה 3:00? ו. באיזה פרק זמן הייתה הטמפרטורה מתחת ל 3 c? מתחת ל 5 c -? ז. מה הייתה הטמפרטורה המקסימלית במשך היממה? מתי? כתבו את שיעורי הנקודה המתאימה בגרף. ח. מה הייתה הטמפרטורה המינימלית במשך היממה? מתי? כתבו את שיעורי הנקודה המתאימה בגרף. 6 נתונים ביטוי של פונקציה והגרף שלה: 2) - )( f() = (5 - א. העתיקו את הגרף )בערך(. ב. סמנו את נקודות החיתוך עם ציר X. מצאו את שיעוריהן ורשמו בסרטוט. ג. סמנו את נקודת החיתוך עם ציר Y. מצאו את שיעוריה ורשמו בסרטוט. ד. עבור אילו ערכים של הערכים של הפונקציה חיוביים? עבור אלו הם שליליים? ה. פתרו: > 0 f() f() < 0 2 f() = 0 3 ו. היעזרו בתשובותיכם לסעיף ה ופתרו: (5 - )( - 2) < 0 2 (5 - )( - 2) = 0 3 (5 - )( - 2) > 0 ז. בסעיפים ה - ו נשאלות אותן שאלות באופנים שונים. השאלות הללו מופיעות גם בסעיפים א - ד. באיזה סעיף מבין הסעיפים א - ד נשאלת אותה שאלה כמו בסעיפים ה ו ו? כמו בסעיפים ה 2 ו ו 2? כמו בסעיפים ה 3 ו ו 3? הידעתם? הלסינקי היא בירת פינלנד. למתעניינים: חפשו באינטרנט ובמקורות אחרים: באיזו יבשת נמצאת הלסינקי? באילו חודשים של השנה הטמפרטורה בהלסינקי קרובה ל 3 c -? באיזה קו רוחב נמצאת הלסינקי? אילו עוד ערים מפורסמות נמצאות בקו רוחב דומה? האם גם בערים הללו יש מזג אוויר דומה? 6

17 שליליות וחיוביות של פונקציה ריבועית אוסף הערכים של, שעבורם הערכים של הפונקציה הם שליליים, נקרא תחום השליליות של הפונקציה. אוסף הערכים של, שעבורם הערכים של הפונקציה הם חיוביים, נקרא תחום החיוביות של הפונקציה. 2 5 דוגמה 2( - () f)( = )5-2 5 תחום השליליות של הפונקציה מסומן בסרטוט: כל המספרים הקטנים מ 2 וכל המספרים הגדולים מ 5. תחום השליליות של f() הוא הפתרון של האי שוויון: < 0 f() בדוגמה שלנו האי שוויון הוא: < 0 2) - )( -.(5 הפתרון הוא < 2 ו > 5, וזה תחום השליליות של הפונקציה. דיון תחום החיוביות של הפונקציה מסומן בסרטוט: 2 5 כל המספרים שבין 2 ל 5. תחום החיוביות של f() הוא הפתרון של האי שוויון: > 0 f() בדוגמה שלנו האי שוויון הוא: > 0 2) - )( -.(5 הפתרון הוא < 5 < 2, וזה תחום החיוביות של הפונקציה. שימו לב: = 5 ו = 2 אינם שייכים לתחום החיוביות של הפונקציה ואינם שייכים לתחום השליליות שלה. 7 מדוע כתוב במסגרת ש 5 = ו = 2 אינם שייכים לתחום החיוביות של הפונקציה ואינם שייכים לתחום השליליות שלה? הסבירו. פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות 7

18 8 לפניכם פונקציות קוויות ופונקציות ריבועיות. בכל סעיף: כתבו את תחום החיוביות ואת תחום השליליות של הפונקציה. פתרו את המשוואות ואת האי שוויונות הרשומים מתחת לגרף של הפונקציה. f() א m() = ד () = ז -2 f() = 0 f() > 0 f() < 0 m() < 0 m() > 0 m() = 0 () = 0 () < 0 () > 0 m() = -5 () = -0.5 g() ב ) 2 + -( n() = ה - = h() ח -2 g() = 0 g() < 0 g() > 0 g() = -2 p() ג p() = 0 p() > 0 p() < 0 p() = 8 n() < 0 n() > 0 n() = 0 n() = - t() = ו t() < 0 t() > 0 t() = 0 t() = -5 h() = 0 h() > 0 h() < 0 h() = - ) 2 - ( k() = ט k() = 0 k() < 0 k() > 0 k() = -2 פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות 8

19 9 לפניכם פונקציות קוויות. בכל סעיף: סרטטו סקיצה של הפונקציה בהתאם לנתונים. תארו במילים את תחום החיוביות של הפונקציה. f() פונקציה קווית ג תחום השליליות: כל תחום השליליות 0 f() פונקציה קווית ב תחום השליליות תחום החיוביות -2 f() פונקציה קווית א תחום החיוביות הוא < 0 תחום השליליות הוא > 0 20 לפניכם פונקציות ריבועיות. בכל סעיף: סרטטו סקיצה של הפונקציה בהתאם לנתונים. תארו במילים את תחום החיוביות של הפונקציה. f() פונקציה ריבועית ב f(-3) = f(3) = 0 f() פונקציה ריבועית ג תחום השליליות: כל תחום השליליות תחום החיוביות תחום החיוביות f() פונקציה ריבועית א תחום החיוביות פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות 2 בכל סעיף סרטטו סקיצה של פונקציה המתאימה לנתונים: פונקציה ריבועית או פונקציה קווית או שתיהן. א תחום השליליות תחום השליליות ג תחום החיוביות: < ב ד תחום החיוביות: כל משלכם 22 א. ההיקף של ריבוע שאורך צלעו ס"מ הוא 4 ס"מ. הסבירו מדוע. A(2, 8) לפניכם גרף הפונקציה.f() = 4 על הגרף מסומנת הנקודה A. האם יש ריבוע שמתאים לה? B(-2, -8) אם כן, סרטטו אותו וכתבו את ממדיו. אם לא, הסבירו מדוע. האם יש ריבוע שמתאים לנקודה B המסומנת על הגרף? אם כן, סרטטו אותו וכתבו את ממדיו. אם לא, הסבירו מדוע. מהו תחום החיוביות של הפונקציה? מהו תחום השליליות שלה? עבור אילו ערכים של הפונקציה מתארת את ההיקף של הריבועים שאורך הצלע שלהם ס"מ? סרטטו מערכת צירים וכתבו בה את כינויי הצירים האלה: "אורך הצלע של הריבוע" ו"היקף הריבוע". סרטטו בתחום המתאים במערכת הצירים את הגרף המתאר את ההיקף של ריבוע. ב. כתבו פונקציה המתארת את השטח של ריבוע שאורך צלעו ס"מ. סרטטו בתחום המתאים במערכת צירים, סקיצה של הגרף המתאים לפונקציה שכתבתם. כתבו את כינויי הצירים. 9

20 משימה לסיכום 23 א. מהן נקודות האפס של פונקציה? ב. כמה נקודות אפס יכולות להיות לפרבולה? תנו דוגמאות. ג. כמה נקודות אפס יכולות להיות לפונקציה קווית? תנו דוגמאות. משימות נוספות 24 בכל סעיף: כתבו כמה נקודות חיתוך יש לגרף של הפונקציה f() עם ציר X. כתבו את שיעורי הנקודות. כתבו כמה נקודות חיתוך יש לגרף של הפונקציה f() עם ציר Y. כתבו את שיעורי הנקודות. ) f() = -( - 6)(6 - ד ) 2 - ( f() = ג ) f() = (3 - )(3 + ב f() = (2-3) א בכל סעיף: 25 כתבו אם הפונקציה הנתונה היא פונקציה ריבועית או לא. מצאו את הפתרונות של המשוואה = 0.f() בדקו את הפתרונות על ידי הצבה. כתבו מהן נקודות האפס של הפונקציה. כתבו מהי נקודת החיתוך של גרף הפונקציה עם ציר Y. 3) - 2( f() = א ) f() = (2 - )(2 + ב f() = 2 2 ג f() = -( - 4) ד לפניכם שתי פונקציות. לכל פונקציה: 26 מצאו את הפתרונות של המשוואה = 0.f() בדקו את הפתרונות על ידי הצבה. כתבו מהן נקודות האפס של הפונקציה. כתבו מהי נקודת החיתוך של הפונקציה עם ציר Y. 2) - 7)( f() = ( + א f() = -2 2 ב בכל סעיף סרטטו סקיצה של גרף של פונקציה ריבועית המקיימת את התנאים המפורטים. 27 א. (0,2-) (0,4) הן נקודות החיתוך של הפונקציה עם ציר X. ו - =. ב. פונקציה שעבורה הפתרונות של המשוואה = 0 f() הם = 0 ג. פונקציה שעבורה למשוואה = 0 f() אין פתרון, ונקודת החיתוך של הפונקציה עם ציר Y היא (3,0). פונקציה ריבועית נקודות החיתוך עם הצירים; חיוביות ושליליות 20

21 ג. ב. נקודות מאפייניהחיתוך הפרבולה עם הצירים; חיוביות ושליליות מה נלמד? מציאת ציר הסימטרייה ונקודת הקדקוד לפי נקודות האפס בניית סקיצה של פרבולה שהביטוי שלה נתון בצורת מכפלה עלייה וירידה של פונקציה ריבועית h() = (3 - )( + ) מציאת ציר הסימטרייה ונקודת הקדקוד לפי נקודות האפס נתונה הפונקציה ) + )(. h() = (3 - א. הראו ש h() היא פונקציה ריבועית. ב. העתיקו את טבלת הערכים של הפונקציה ומלאו אותה. ג. היעזרו בטבלת הערכים וסרטטו סקיצה של הפרבולה.h() ד. מהן נקודות האפס של הפונקציה? ה. הסבירו איך רואים מהן נקודות האפס של הפונקציה בכל אחד מהייצוגים. ו. סרטטו את ציר הסימטרייה של הפרבולה. ז. מה הקשר בין נקודות האפס של הפרבולה לבין ציר הסימטרייה? 2 2 א. לפניכם פרבולה החותכת את ציר X בנקודות )0,2( ו )0,8(. באיזו נקודה על ציר X עובר ציר הסימטרייה של הפרבולה? הסבירו. 8 ב. סרטטו סקיצה של פרבולה שציר הסימטרייה שלה עובר דרך הנקודה )0,3(, ואחת מנקודות החיתוך שלה עם ציר X היא )0,2(. מהם שיעורי נקודת החיתוך האחרת עם ציר X? 3 נתונה הפונקציה הריבועית (5 + )(. h() = ) + סרטטו את גרף הפונקציה לפי השלבים האלה: א. סרטטו מערכת צירים. ב. האם גרף הפונקציה h() חותך את ציר X? אם כן - מצאו את נקודות האפס של הפונקציה h() וסמנו אותן במערכת הצירים. ג. סמנו על ציר X נקודה שדרכה עובר ציר הסימטרייה של גרף הפונקציה. מהו שיעור ה של הנקודה הזאת? כיצד שיעור ה הזה קשור לנקודות החיתוך של הפרבולה עם ציר X? סרטטו את ציר הסימטרייה של הפרבולה. ד. מהו שיעור ה של קדקוד הפרבולה? הציבו את שיעור ה של הקדקוד בביטוי )5 + )( h() = ) + ומצאו את ערך הפונקציה h() בנקודת הקדקוד. סמנו את נקודת הקדקוד במערכת הצירים וכתבו לידה את שיעורי הנקודה. האם הקדקוד של הפרבולה הזאת הוא נקודת מינימום או נקודת מקסימום? הסבירו. פונקציה ריבועית מאפייני הפרבולה המשך 2

22 ה. כיצד אפשר למצוא את השיעורים של קדקוד הפרבולה, אם יודעים מהן נקודות החיתוך של הפרבולה עם ציר X. ו. באיזו נקודה הגרף של הפונקציה h() חותך את ציר Y? הסבירו איך ניתן למצוא את הנקודה לפי הביטוי של הפונקציה. סמנו את הנקודה במערכת הצירים. סמנו גם את הנקודה הסימטרית לה, בצד השני של ציר הסימטרייה. ז. סרטטו סקיצה של גרף הפונקציה h(( העובר דרך הנקודות שסימנתם. בניית סקיצה של גרף הפונקציה הריבועית f() הנתונה בצורת מכפלה -4 2 דוגמה 4) + )( f() = (2 - פותרים את המשוואה (2 - )( + 4) = 0 ומקבלים את נקודות האפס של הפונקציה: 0) (-4, 0) (2, א. מוצאים את נקודות האפס של הפונקציה: כדי למצוא אותן פותרים את המשוואה = 0.f() -4-2 )-, 9( פונקציה ריבועית נקודות פונקציה החיתוך עם ריבועית הצירים; מאפייני חיוביות הפרבולה ושליליות ב. בונים את ציר הסימטרייה של הפרבולה: מסמנים את נקודת האמצע של הקטע המחבר בין נקודות האפס של הפונקציה, ומעבירים דרכה את הישר המקביל לציר Y. ג. מסמנים את קדקוד הפרבולה: הקדקוד נמצא על ציר הסימטרייה, ולכן שיעור ה של הקדקוד הוא שיעור ה של כל הנקודות שעל ציר הסימטרייה. כדי למצוא את שיעור ה של הקדקוד מציבים את שיעור ה שלו בביטוי הפונקציה ומוצאים את ערך הביטוי. ד. מוצאים את נקודת החיתוך של הפרבולה עם ציר Y: כדי למצוא את הנקודה מציבים = 0 בביטוי הפונקציה. מסמנים גם את הנקודה הסימטרית לה, בצד השני של ציר הסימטרייה. ה. מסרטטים סקיצה של הפרבולה. נקודת האמצע בין לבין = 2 = -4 היא הנקודה - =. מעבירים דרכה ישר מקביל לציר Y. שיעור ה של הקדקוד הוא - =. מוצאים את שיעור ה של הקדקוד: f(-) = (2 - (-))(- + 4) = 9 שיעורי הקדקוד הם: (9,-) f(0) = (2-0)(0 + 4) = 8 22

23 4 בכל סעיף נתון ביטוי של פונקציה ריבועית. מצאו את נקודות החיתוך של הפרבולה עם ציר X וסמנו אותן על הצירים. סרטטו את ציר הסימטרייה. מצאו את השיעורים של קדקוד הפרבולה וסמנו את הקדקוד. כתבו אם הקדקוד הוא נקודת המקסימום או נקודת המינימום של הפרבולה. מצאו את נקודת החיתוך של הפרבולה עם ציר Y וסמנו אותה. סמנו גם את הנקודה הסימטרית לה. סרטטו סקיצה של גרף הפונקציה. f() = (3 - )( + 5) f() = ( + 5) ה ג א f() = (7-2)( - ) f() = ( - )( + ) ו 5) + 3)( f() = 2( - ד ב f() = -3(8 - ) 5 העתיקו את הטבלה והשלימו כל שורה בהתאם לפונקציה הנתונה. א ביטוי נקודות החיתוך עם ציר X ערך ה של ציר הסימטרייה שיעורי הקדקוד נקודת החיתוך עם ציר Y סקיצה של הפרבולה f() = ( - 3)( + 5) ב ) f() = ( + )(4 + ג ד ה פונקציה ריבועית נקודות פונקציה החיתוך עם ריבועית הצירים; מאפייני חיוביות הפרבולה ושליליות f() = ( - 2) f() = 3( - 2)( + 4) f() = (3-2)( - ) 6 בחרו מבין ארבע הפונקציות הבאות את הפונקציה המתאימה לפרבולה הנתונה. הסבירו את בחירתכם. 2) + 3)( f() = ( + א 2) - 3)( g() = ( + ב 2) + 3)( h() = ( - ג 2) - 3)( p() = ( - ד ד 7 איזו מבין ארבע הפרבולות הבאות מתאימה לפונקציה?k() = ) - (4 הסבירו את בחירתכם. ג ב א 23

24 8 א. לפניכם חמישה ביטויים וארבע פרבולות. התאימו לכל פרבולה את הביטוי שלה. f() = ( - 5)( + 5) g() = ( - 5) 2 h() = ( + 5) 2 k() = ( + 5) m() = ( - 5) ב. סרטטו סקיצה של הפרבולה החסרה ותארו תכונות רבות ככל האפשר של הפרבולה. 9 א. בנו סקיצה של גרף הפונקציה (2 - )(7.h() = ) + תארו תכונות רבות ככל האפשר של הפונקציה.h() ב. בנו סקיצה של גרף הפונקציה (.g() = 2) - תארו תכונות רבות ככל האפשר של הפונקציה.g() 0 לכל פרבולה כתבו ביטויים מתאימים בשתי צורות: בצורת מכפלה n( f)( = ) - m)( - ובצורה.f)( = 2 + b + c ג ב א פונקציה ריבועית נקודות פונקציה החיתוך עם ריבועית הצירים; מאפייני חיוביות הפרבולה ושליליות עלייה וירידה של פונקציה ריבועית א. סרטטו במערכת צירים סקיצה של פרבולה שיורדת בתחום < 3 ועולה בתחום > 3. ב. סרטטו סקיצה של פרבולה אחרת שיורדת בתחום < 3 ועולה בתחום > 3. ג. לכל פרבולה שסרטטתם כתבו אם הקדקוד של הפרבולה הוא נקודת המינימום או נקודת המקסימום שלה. 2 א. סרטטו סקיצה של פרבולה משלכם שיש לה נקודת מינימום. כתבו מהו תחום העלייה של הפונקציה ומהו תחום הירידה שלה. ב. סרטטו סקיצה של פרבולה משלכם שנקודת המקסימום שלה היא )3,7-(. כתבו מהו תחום העלייה של הפונקציה ומהו תחום הירידה שלה. 3 נתונים ייצוג גרפי וייצוג אלגברי של הפונקציה :f() f() = ( + )( + 5) א. האם הפונקציה הנתונה עולה? האם היא יורדת? ב. מהו תחום העלייה של הפונקציה? ג. מהו תחום הירידה של הפונקציה? -3 24

25 תחום העלייה ותחום הירידה של פונקציה בפונקציה 5) + )( f() = ( + שיעור ה של נקודת הקדקוד הוא -3 = > הוא תחום הירידה של הפונקציה. 3- < הוא תחום העלייה של הפונקציה. תחום העלייה תחום הירידה 4 עבור כל פונקציה כתבו את תחום העלייה ואת תחום הירידה שלה. p() פונקציה קווית ה h() פונקציה קווית ג f() פונקציה ריבועית א q() פונקציה קווית ו k() פונקציה ריבועית ד g() פונקציה ריבועית ב בכל סעיף סרטטו את הסקיצה של גרף הפונקציה וכתבו את תחום העלייה ואת תחום הירידה שלה. 5 ) f() = 2( - 3)(8 - א 6) + -( g() = ב h() = - 2 ג בכל סעיף: 6 סרטטו מערכת צירים וסמנו בה את הנקודות האלה: )2,( )8,6( סרטטו גרף שעובר דרך שתי הנקודות לפי האפיונים הנתונים. אם אי אפשר, הסבירו מדוע. ד. הפונקציה יורדת ג. הפונקציה עולה ב. הפונקציה יורדת א. הפונקציה עולה ואחר כך עולה ואחר כך יורדת לפניכם סקיצה של גרף הפונקציה 5) + )(.f() = 0.5( - 7 היעזרו בביטוי ובגרף וענו: א. מהן נקודות האפס של הפונקציה? ב. מהם שיעורי הקדקוד של הפונקציה? ג. מהו תחום החיוביות של הפונקציה? מהו תחום השליליות? ד. מהו תחום העלייה של הפונקציה? מהו תחום הירידה? פונקציה ריבועית נקודות פונקציה החיתוך עם ריבועית הצירים; מאפייני חיוביות הפרבולה ושליליות 25

26 8 בכל סעיף נתון בצורה גרפית תחום העלייה של פונקציה ריבועית. כתבו את תחום העלייה במילים ובצורה אלגברית. סרטטו סקיצה של פרבולה מתאימה. ה ג א ו ד ב בכל סעיף נתון בצורה גרפית תחום החיוביות או תחום השליליות של פונקציה. כתבו את התחום במילים ובצורה אלגברית. סרטטו סקיצה של פרבולה מתאימה. תחום החיוביות ג תחום השליליות: כל ב תחום החיוביות א פונקציה ריבועית נקודות פונקציה החיתוך עם ריבועית הצירים; מאפייני חיוביות הפרבולה ושליליות 20 סרטטו סקיצה של פרבולה שקודם עולה ואחר כך יורדת, ונקודות האפס שלה הן )0,2( ו ) 0,2-(. מהו תחום השליליות של הפונקציה? מהו תחום החיוביות שלה? 2 א. סרטטו במערכת צירים סקיצה של פרבולה המתאימה לנתונים האלה: הפרבולה חותכת את ציר X בנקודות )0,( ו ) 0,5(. הקדקוד של הפרבולה הוא נקודת מינימום. ב. מהו תחום החיוביות של הפרבולה? מהו תחום השליליות שלה? ג. סרטטו את ציר הסימטרייה של הפרבולה. ד. סמנו את נקודת הקדקוד של הפרבולה וכתבו את שיעוריה. ה. מהו תחום העלייה של הפרבולה? מהו תחום הירידה של הפרבולה? ו. סמנו על הפרבולה שסרטטתם את נקודת הקדקוד, ועוד מספר נקודות בשני הצדדים של ציר הסימטרייה. רשמו בטבלה כמו זו שלפניכם את שיעורי הנקודות שסימנתם. f() ז. כתבו אם יש התאמה בין שיעורי הנקודות שבטבלה לבין: תחום החיוביות תחום השליליות תחום הירידה תחום העלייה. 26

27 ד. הפונקציה הריבועית f() = a 2 + c מה נלמד? פירוק לגורמים לפי נוסחת הפרש הריבועים - חזרה הזזות אנכיות של הפונקציה f() = 2 בניית סקיצה של פונקציה ריבועית הנתונה בצורה h() = 2 + c הקשר בין הפרבולה f() = a 2 לפרבולה. g() = -a 2 פירוק לגורמים לפי נוסחת הפרש הריבועים - חזרה תזכורת נוסחת הפרש הריבועים: m) k 2 - m 2 = (k - m)(k + פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c א. נתון הביטוי. 2-6 פרקו אותו לגורמים - רשמו ביטוי שווה ערך )שקול( בצורת מכפלה של שני גורמים. ב. נתונה הפונקציה הריבועית.f() = 2-6 כתבו את הביטוי של הפונקציה בצורת מכפלה. ג. סרטטו סקיצה של גרף הפונקציה. ד. כתבו תכונות רבות ככל האפשר של הפונקציה. )השתמשו במושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, קדקוד, ציר סימטרייה, מינימום או מקסימום(. 2 בכל סעיף: רשמו את הביטוי של כל פונקציה כמכפלה של שני גורמים. סרטטו סקיצה של הפרבולה המתאימה. רשמו את שיעורי נקודות האפס. רשמו את שיעורי הקדקוד. g() = ה p() = 6-2 ד t() = 2-8 ג k() = 25-2 ב f() = 2-25 א 3 א. כל הביטויים של הפונקציות המופיעות במשימות ו 2 הם בצורה. f() = a 2 + b + c כתבו מהם,a,b c של כל פונקציה. ב. מה משותף לכל הביטויים הללו? )התייחסו ל.(,a,b c ג. מה משותף לכל הגרפים של הפונקציות הללו? )השתמשו במושגים: ציר סימטרייה, קדקוד, נקודות אפס, נקודת חיתוך עם ציר Y.( ד. כתבו דוגמה משלכם לפונקציה מהצורה. f() = 2 - m 2 ה. כתבו תכונות רבות ככל האפשר של הפונקציה שלכם. )השתמשו במושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, קדקוד, ציר סימטרייה, מינימום או מקסימום.( 4 פתרו את המשוואה = דיון דיון

28 אפשר לפתור את המשוואה = בדרכים שונות: פתרון על ידי פירוק לגורמים פתרון על ידי פעולה הפוכה 2-00 = 0 / = 00 = -0 = = 0 ( + 0)( - 0) = = 0-0 = 0 = -0 = 0 5 פתרו את המשוואות = = 0-36 = - 2 י ז ד א 70-2 = = = 63 0 = - 2 יא ח ה ב = = 0 8 = 2 יב = ט ו ג 0 = בכל סעיף פתרו את המשוואה וכתבו כמה פתרונות יש לה. = א = 0 2 ב = ג דיון הזזות אנכיות של הפרבולה f() = 2 f() = המשך 7 א. לפניכם סרטוט של הפונקציה f() = 2 וטבלה. העתיקו את הטבלה והשלימו את ערכי הפונקציה f() = 2 בטור המתאים בטבלה. העתיקו את גרף הפונקציה. סרטטו את ציר הסימטרייה של הפונקציה. סמנו את נקודת הקדקוד של הפונקציה ורשמו לידה את שיעוריה. g() = 2-4 ב. השלימו בטבלה את הערכים של הפונקציה.g() = סמנו באותה מערכת צירים את הנקודות של גרף הפונקציה g() ששיעוריהן מופיעים בטבלה. 0 בדקו בטבלה ובגרף: מה הקשר בין נקודות הפונקציה f() לנקודות הפונקציה?g() איך רואים את הקשר הזה בביטויים של שתי הפונקציות? סרטטו את הסקיצה של גרף הפונקציה.g() סרטטו את ציר הסימטרייה של הפונקציה.g() 0 סמנו את נקודת הקדקוד של הפונקציה g() ורשמו לידה את שיעוריה. ג. הוסיפו טור בטבלה עבור פונקציה נוספת:,h() = וסרטטו באותה מערכת צירים סקיצה של הפרבולה המתאימה. מה הקשר בין הגרף של הפונקציה h() לבין הגרף של הפונקציה?f() סרטטו את ציר הסימטרייה של הפונקציה.h() סמנו את נקודת הקדקוד של h() ורשמו לידה את שיעוריה. דיון פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c 28

29 ד. כמה נקודות אפס יש לכל אחת משלוש הפונקציות,f() g() ו?h() מהן? ה. הגרף של הפונקציה g() = 2-4 מתקבל על ידי הזזה של גרף הפונקציה.f() = 2 הסבירו בכמה יחידות ובאיזה כיוון )למעלה או למטה( ההזזה מתבצעת. ו. הגרף של הפונקציה h() = מתקבל על ידי הזזה של גרף הפונקציה.f() = 2 הסבירו בכמה יחידות ובאיזה כיוון )למעלה או למטה( ההזזה מתבצעת. דוגמאות להזזה אנכית של הפרבולה f() = 2 h() = הגרף מתקבל על ידי הזזה של גרף הפונקציה f() = 2 ב 4 יחידות למעלה: g() = 2-4 הגרף מתקבל על ידי הזזה של גרף הפונקציה f() = 2 ב 4 יחידות למטה: f() = 2 פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c בגרף הפונקציה: אין שום נקודת אפס ציר הסימטרייה: ציר Y הקדקוד נמצא על ציר Y ושיעוריו 4(.)0, בגרף הפונקציה: יש שתי נקודות אפס: )2, 0( )-2, 0( ציר הסימטרייה: ציר Y הקדקוד נמצא על ציר Y בגרף הפונקציה: יש נקודת אפס אחת: )0,0( ציר הסימטרייה: ציר Y הקדקוד נמצא על ציר Y ושיעוריו 0(.)0, ושיעוריו -4(.)0, בכל סעיף מופיעה פונקציה שהגרף שלה מתקבל על ידי הזזה של גרף הפרבולה.f() = 2 לכל פונקציה: 8 הסבירו בכמה יחידות ובאיזה כיוון יש להזיז את הפרבולה f() כדי לקבל את גרף הפונקציה הנתונה. סרטטו סקיצה של גרף הפונקציה. מצאו את שיעורי הקדקוד של הפונקציה וכתבו אותם בגרף. כתבו כמה נקודות אפס יש לפונקציה. רשמו את שיעוריהן בגרף. g() = 2-9 א h() = ב k() = ג m() = 2-6 ד א. כל הפונקציות המופיעות במשימה הקודמת הן פונקציות מהצורה.f() = 2 + c 9 פרטו מהו c בכל אחת מהפונקציות הללו. ב. כל הפונקציות המופיעות במשימה הקודמת הן פונקציות ריבועיות. כתבו כל פונקציה בצורה.f() = a 2 + b + c ג. השוו בין גרף הפונקציה f() = 2 + c שבה c חיובי לגרף הפונקציה g() = 2 + c שבה c שלילי. )השתמשו במושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, ציר סימטרייה, נקודת קדקוד, מינימום או מקסימום.( דיון 29

30 בניית סקיצה של פונקציה ריבועית הנתונה בצורה h() = 2 + c הגרף של הפונקציה h() = 2 + c מתקבל על ידי הזזה אנכית של גרף הפונקציה.f() = המספר c יכול להיות חיובי או שלילי. כאשר < 0 c הגרף מוזז למטה, ולפונקציה יש שתי נקודות אפס )גרף (. כאשר > 0 c הגרף מוזז למעלה, ולפונקציה אין נקודות אפס )גרף 2(. שימו לב: כאשר = 0 c הגרף אינו מוזז, ולפונקציה יש נקודת אפס אחת )גרף 3(. ציר הסימטרייה של גרף הפונקציה h() = 2 + c הוא ציר Y. קדקוד הפרבולה נמצא על ציר Y; שיעורי הקדקוד: )c,0( 0 במסגרת שלמעלה מופיעים שלושה סוגי פונקציות שהביטוי שלהן הוא מהצורה.h() = 2 + c תנו דוגמה לכל סוג: כתבו את הביטוי האלגברי וסרטטו סקיצה מתאימה. בכל סעיף מופיע גרף של פונקציה שהתקבל על ידי הזזה של גרף הפונקציה.f() = 2 לכל פונקציה כתבו את הביטוי האלגברי המתאים. א ב ג א. סרטטו במערכת צירים סקיצה של גרף הפונקציה.f() = 2 2 סרטטו באותה מערכת צירים סקיצה של גרף הפונקציה.k() = חיזוק ב. תארו את ההזזה שאפשר לבצע על גרף הפונקציה f() כך שיתקבל גרף הפונקציה.k() ג. מהי נקודת הקדקוד של הפרבולה?k() = האם היא נקודת מינימום או נקודת מקסימום? ד. האם גרף הפונקציה k() = חותך את ציר X? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ה. האם גרף הפונקציה k() = חותך את ציר Y? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ו. מהו ציר הסימטרייה של גרף הפונקציה?k() = ז. התבוננו בגרף וענו: עבור אילו ערכים של ערכי הפונקציה k() חיוביים? שליליים? 0? לכל פונקציה נתונה: 3 סרטטו סקיצה של גרף הפונקציה. כתבו תכונות רבות ככל האפשר של גרף הפונקציה. )השתמשו במושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, ציר סימטרייה, נקודת קדקוד, מינימום או מקסימום.( g() = 2 - א h() = ב k() = ג פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c 30

31 4 בכל סעיף נתונה משוואה. סרטטו סקיצה של גרף המשוואה וכתבו כמה פתרונות יש לה. פתרו את המשוואה. דוגמה 4 דוגמה 3 דוגמה 2 דוגמה 89 = שני פתרונות: = -5 = 5 64 = פתרון אחד: = 0 9 = אין פתרון 0 = אין פתרון 0 = = ז = ה ג א = 2-25 = = 2-25 ח = ו ד ב 45 = נתונות שתי פונקציות: 9) 2 - ( f() = 2-9 g() = א. איזו פונקציה התקבלה על ידי הזזה אנכית של?h() = 2 ב. מצאו את נקודות האפס ואת הקדקוד של כל אחת מהפרבולות. פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c h() = ג. סרטטו סקיצה של כל אחת מהפרבולות. הקשר בין הפרבולה f() = a 2 לפרבולה g() = -a 2 g() = - 2 h() = 2 נתונות שתי פונקציות ריבועיות: g() = א. העתיקו את הטבלה הנתונה והשלימו את ערכי הפונקציות בטורים המתאימים. ב. לפי הנקודות שבטבלה, סרטטו במערכת צירים אחת סקיצות של שתי הפרבולות. ג. מה הקשר בין הערכים של הפונקציות בכל שורה בטבלה? איך הקשר הזה מתבטא בביטויים של שתי הפונקציות? איך הקשר הזה מתבטא בגרפים של שתי הפונקציות? ד. מהו ציר הסימטרייה של כל אחת מהפרבולות? ה. מהם שיעורי נקודת הקדקוד של כל אחת מהפרבולות? האם היא נקודת מקסימום או נקודת מינימום? דיון ו. הפונקציות h() ו g() הן מהצורה.f() = a 2 פרטו מהו a בכל אחת מהפונקציות האלו. 3

32 7 נתונות שתי פונקציות ריבועיות: g() = -3 2 h() = 3 2 א. העתיקו את הטבלה הנתונה והשלימו את ערכי הפונקציות בטורים המתאימים. ב. לפי הנקודות שבטבלה, סרטטו במערכת צירים אחת סקיצות של שתי הפרבולות. ג. מה הקשר בין הערכים של הפונקציות בכל שורה בטבלה? איך הקשר הזה מתבטא בביטויים של שתי הפונקציות? איך הקשר הזה מתבטא בגרפים של שתי הפונקציות? ד. מהו ציר הסימטרייה של כל אחת מהפרבולות? ה. מהם שיעורי נקודת הקדקוד של כל אחת מהפרבולות? האם היא נקודת מקסימום או נקודת מינימום? ו. הפונקציות h() ו g() הן מהצורה.f() = a 2 פרטו מהו a בכל אחת מהפונקציות האלו. ז. פתרו: h() = = 0 g() = = = = = = = = = = נתונה פונקציה ריבועית מהצורה.f() = a 2 א. כתבו תכונות רבות ככל האפשר של גרף הפונקציה כאשר a הוא מספר חיובי )0 > a(. )התייחסו למושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, קדקוד, ציר סימטרייה, מינימום או מקסימום.( ב. כתבו תכונות רבות ככל האפשר של גרף הפונקציה כאשר a הוא מספר שלילי )0 < a(. )התייחסו למושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, קדקוד, ציר סימטרייה, מינימום או מקסימום.( בפונקציה ריבועית מהצורה :f() = a 2 אם < 0 a אז: אם > 0 a אז: לפרבולה יש מקסימום בנקודה (0,0). לפרבולה יש מינימום בנקודה (0,0). הערכים של הפונקציה הם שליליים או 0. הערכים של הפונקציה הם חיוביים או 0. g() = -3 2 f() = - 2 h() = g() = 3 2 f() = 2 h() = 3 2 כל פרבולה t() = a 2 היא שיקוף )"תמונת ראי"( של הפרבולה,r() = -a 2 ולהפך. פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c 32

33 9 בכל סעיף סרטטו סקיצה של גרף המשוואה, כתבו כמה פתרונות יש לה ופתרו אותה. 6 2 = = = = = 3 יא ט ז ה ג א 3 2 = = = = = = 3 יב י ח ו ד ב = - 27 פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c 20 א. סרטטו במערכת צירים סקיצה של גרף הפונקציה.f() = - 2 חיזוק סרטטו באותה מערכת צירים סקיצה של גרף הפונקציה.k() = ב. תארו את ההזזה שאפשר לבצע על גרף הפונקציה f() כך שיתקבל גרף הפונקציה.k() ג. מהי נקודת הקדקוד של הפרבולה?k() = האם קדקוד הפרבולה הוא נקודת המינימום או נקודת המקסימום של הפונקציה?k() ד. האם גרף הפונקציה k() = חותך את ציר X? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ה. האם גרף הפונקציה k() = חותך את ציר Y? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ו. מהו ציר הסימטרייה של גרף הפונקציה?k() = ז. התבוננו בגרף וענו: עבור אילו ערכים של ערכי הפונקציה חיוביים? שליליים? 0? ח. סרטטו במערכת צירים אחת את שתי הפונקציות: h() = f() = - 2 ט. ענו על השאלות בסעיפים ב-ז לגבי הפונקציה.h() = י. היעזרו בגרפים ופתרו את המשוואות = = = = = = = = 9 2 א. אורך צלע אחת במלבן גדול פי.6 מאורך הצלע הסמוכה. שטח המלבן הוא 2560 סמ"ר. מהם אורכי הצלעות של המלבן? ב. רוני פתרה את השאלה בעזרת המשוואה = ומצאה שני פתרונות: = 40 ו 40- =. האם צדקה רוני? הסבירו. 22 במשולש כלשהו זווית אחת גדולה פי 2 מזווית אחרת. המכפלה של הגדלים של שתי הזוויות היא מצאו את זוויות המשולש וציינו את סוג המשולש. 33

34 משימה לסיכום 23 א. איך מתקבל הגרף של הפונקציה f() = 2-5 מהגרף של הפונקציה.f() = 2 ב. תארו תכונות רבות ככל האפשר של הפונקציה.h() = 2-6 )התייחסו למושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, ציר סימטרייה, קדקוד, מינימום או מקסימום( ג. תארו תכונות רבות ככל האפשר של הפונקציה.h() = ד. קדקוד הפונקציה f() = 2 + c נמצא בנקודה 3(.)0, מהו הערך של?c ה. באיזו נקודה נמצא קדקוד הפונקציה?f() = 4-2 ו. תארו תכונות רבות ככל האפשר של הפונקציה.h() = 6-2 ז. סרטטו סקיצה של גרף המשוואה = -6. כמה פתרונות יש למשוואה? מהם? משימות נוספות 24 בכל סעיף נתונה פונקציה שהגרף שלה מתקבל על ידי הזזה של גרף הפונקציה.f() = 2 בכל סעיף: קבעו בכמה יחידות ובאיזה כיוון יש להזיז את גרף הפונקציה f(( כדי לקבל את הפונקציה הנתונה. סרטטו סקיצה של גרף הפונקציה הנתונה. כתבו תכונות רבות ככל האפשר של גרף הפונקציה. )התייחסו למושגים: תחום עלייה ותחום ירידה, תחום חיוביות ותחום שליליות, נקודות אפס, נקודת חיתוך עם ציר Y, ציר סימטרייה, קדקוד, מינימום או מקסימום(. g() = 2 - א 2-49 = 0 g() = 2 + ב = 0 g() = ג -49 = - 2 g() = ד 25 פתרו את המשוואות. י יא ז ח ד ה א = ב = = = 2 0 = + 2 יב = ז ט ו ג 8-2 = = = בכל סעיף סרטטו סקיצה של גרף המשוואה, כתבו כמה פתרונות יש לה ופתרו אותה. ה ג -8 = 2 - א = ב 0 2 = = -0 2 ח ו -000 = 2 0 ד -0. = = = 4 9 פונקציה ריבועית הפונקציה הריבועית f() = a 2 + c 34

35 ה. תרגול נוסף א. סרטטו במערכת צירים סקיצה של הפרבולה ( 2 + ).k() = היעזרו בשלבים האלה: האם הפרבולה חותכת את ציר X? אם כן - באילו נקודות? אם לא - הסבירו מדוע. מהו ציר הסימטרייה של הפרבולה? מהו הקדקוד של הפרבולה? האם קדקוד הפרבולה הוא נקודת המינימום או נקודת המקסימום של הפונקציה? האם הפרבולה חותכת את ציר Y? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ב. התבוננו בגרף שסרטטתם וענו: מהו תחום החיוביות של הפונקציה?k() מהו תחום השליליות שלה? מהו תחום העלייה של הפונקציה?k() מהו תחום הירידה שלה? ג. פתרו )היעזרו בגרף שסרטטתם(: ( + )2 = 0 2 ( + )2 = 3 ( + )2 = 6 4 ( + )2 = 8 5 ( + )2 = ( + )2 = - 2 בכל אחד מהסעיפים 6 - שלפניכם מופיעה פונקציה ריבועית. א. כתבו אם גרף הפונקציה התקבל על ידי הזזה אנכית של h() = 2 או לא. ב. מצאו את נקודות האפס ואת הקדקוד של הפרבולה. ג. סרטטו סקיצה של הפרבולה. ד. פתרו את המשוואה: = 0 g() ה. פתרו את המשוואה: = 36 g() g() = ( - 3)2 3 g() = g() = g() = ( + 5)2 4 g() = ( + 8)( - 8) 6 g() = ( + 3)( + 3) פונקציה ריבועית תרגול נוסף 3 בכל סעיף נתונה פרבולה. כתבו ביטוי שיכול להתאים לה. א ב ג ד (0, -3) (0, 3) (-3, 0) (3, 0) 35

36 4 בכל סעיף סרטטו סקיצה של גרף הפונקציה וכתבו תכונות רבות ככל האפשר. 6) - 6)( f() = ( - ג 6) - 6)( f() = ( + ב 6) + 6)( f() = ( + א 5 בכל סעיף סרטטו סקיצה של גרף הפונקציה וכתבו תכונות רבות ככל האפשר. 2) - 5)( f() = ( - ד f() = ( - 5) ג 2) - 5)( f() = ( + ב f() = ( + 5) א א בכל סעיף נתונה פונקציה ריבועית. סרטטו סקיצה של כל פרבולה. היעזרו בשלבים האלה: 6 מצאו את נקודות האפס: פתרו את המשוואה = 0.g() אתגר מצאו את ציר הסימטרייה של הפרבולה. מצאו את קדקוד הפרבולה. מצאו את נקודת החיתוך של הפרבולה עם ציר Y. g() = ( - ) 2-4 ג ) ( g() = ה 3) 2 + ( g() = 25 - g() = 2 + g() = ( + 5) 2-6 ו ד ב g() = בכל סעיף נתונה פרבולה. לכל פרבולה כתבו שני ביטויים מתאימים: 7 ביטוי בצורת מכפלה n).f() = ( - m)( - הרחבה ביטוי בצורה.f() = 2 + b + c דוגמה 2) - ( f() = ביטוי הפונקציה בצורת מכפלה: f() = ביטוי הפונקציה בצורה :a 2 + b + c ב א ג ) (0, 0) (2, א בכל סעיף נתונות נקודות האפס של פרבולה. כתבו ביטוי של פונקציה מתאימה וסרטטו את הסקיצה של הפרבולה. 0( )-9, 0( )-5, ד 0( )7, ג 0) (0, 0) (-3, ב פונקציה ריבועית תרגול נוסף 36

37 9 בכל סעיף חשבו את שטח המשולש ABC שקדקודו C נמצא על ציר הסימטרייה של הפרבולה. היעזרו בשיעורי הנקודות שהן הקדקודים של המשולש. 0 8 A B -64 C f() = ( - 8)( + 8) נקודה A היא ראשית הצירים ושיעוריה הם (0,0)A. נקודה B היא נקודת אפס של הפונקציה ושיעוריה הם (0,8)B. נקודה C היא הקדקוד של הפונקציה ושיעוריה הם (64-,0)C. S = דוגמה ABC הוא משולש ישר זווית. אורך הניצב AB הוא 8 יחידות, ואורך הניצב AC הוא 64 יחידות. לכן שטח המשולש הוא 256 יחידות ריבועיות: = 256 3) - )( f() = ( + א A B ) f() = 2(3 - ב C ) - 7)( f() = ( + ג A B C A B C 0 בכל סעיף כתבו ביטוי של פונקציה ריבועית מתאימה. א. שיעורי נקודת המקסימום הם )0,5(. ב. שיעורי נקודת המקסימום הם )2,0(. ג. שיעורי נקודת המינימום הם )2-,0(. ד. לכל אחד מהסעיפים א-ג כתבו ביטוי של פונקציה מתאימה נוספת. פונקציה ריבועית תרגול נוסף בכל סעיף תארו את מאפייני הפרבולה. התייחסו למושגים: תחום חיוביות ותחום שליליות, נקודות אפס, קדקוד, ציר סימטרייה, מינימום, מקסימום, תחום עלייה ותחום ירידה. א g() = ד k() = 9-2 ז () = 2 י ) ( g() = ב () = -3 2 ה ) 2 p() = (3 - ח 2) + 3)( () = -( + יא f() = ג k() = ו ) 2 - ( p() = ט g() = יב t() =

38 2 סרטטו סקיצה של כל משוואה, כתבו כמה פתרונות יש לה ופתרו אותה = 0-2 = 0 יג - = 2 2) - -( ט ה א (5 - ) = = - -( - 2) 2 = -4 יד = 0 9) - 3)( -( - י ו ב -(7-4)( + 5) = = -7 -( - 2) 2 = = 0 טו יא ז ג 3(24-8) = 0 -( - 2) 2 = -6 -( + ) 2 = = 27 טז יב ח ד 5-2 = -4 3 בכל סעיף כתבו ביטוי של פונקציה היכול להתאים לגרף הנתון. ד ג ב א בכל סעיף )שורה בטבלה( יש נתון מסוים. הוסיפו את החסר: סקיצה ביטוי נקודות האפס שיעורי הקדקוד f() = 2( - 3)( - 7) א ב. (3, 0) (0, 0) (-3, 0) ג. 3) ( f() = ד. ה. לפניכם פונקציות ריבועיות. כתבו כל פונקציה בצורה.a 2 + b + c כתבו מהם.a, b, c 5 f() = 2 + א f() = -2-2 ב f() = ג f() = ד בכל סעיף: 6 כתבו כמה נקודות חיתוך יש לגרף הפונקציה f() עם ציר X. כתבו את שיעורי הנקודות. כתבו כמה נקודות חיתוך יש לגרף הפונקציה f() עם ציר Y. כתבו את שיעורי הנקודות. א 2) + )( f() = (2 - ג ) - )( f() = -9( + ה ) 2 + ( f() = ב 2) ( f() = ד f() = 2-0,000 ו 2) ( f() = פונקציה ריבועית תרגול נוסף 38

39 7 ידוע שלפונקציה יש נקודת מינימום ששיעוריה הם )9-,0(. בכל סעיף ענו והסבירו את תשובתכם. א. איזה מהביטויים הבאים יכול להתאים לפונקציה: f() = ( - 9) 2 2 g() = h() = k() = ( + 9) 2 ב. מצאו את שיעורי הנקודות השייכות לגרף של הפונקציה:?( - )-3,?( - )-,?) - )3,?) - (, ג. מצאו את נקודות האפס של הפונקציה. ד. מהו ציר הסימטרייה של הפונקציה? ה. מהי נקודת החיתוך עם ציר Y? ו. סרטטו סקיצה של גרף הפונקציה. ז. עבור אילו ערכי הפונקציה עולה? יורדת? ח. עבור אילו ערכי הפונקציה חיובית? שלילית? 8 בכל סעיף נתונה פונקציה בשני ייצוגים: כמה נקודות חיתוך עם ציר X יש לגרף הפונקציה? פתרו את המשוואה = 0.f() מהי נקודת החיתוך של הגרף עם ציר Y? f() = - 2 א f() = 2-6 ב 9 נתונה פונקציה ריבועית ).h() = ( - 3)(4 - חיזוק א. באילו נקודות הגרף של h() חותך את ציר X? מדוע? ב. מהם שיעורי הקדקוד? ג. האם נקודת הקדקוד היא מינימום או מקסימום של הפונקציה? הסבירו. ד. סרטטו סקיצה של הגרף. ה. עבור אילו ערכים של ערכי h() חיוביים? שליליים? 0? ו. עבור אילו ערכים של הפונקציה h() יורדת? עולה? פונקציה ריבועית תרגול נוסף 39

40 20 א. סרטטו במערכת צירים סקיצה של גרף הפונקציה.f() = 2 סרטטו באותה מערכת צירים סקיצה של גרף הפונקציה.k() = 2-4 ב. תארו את ההזזה שאפשר לבצע על גרף הפונקציה f() כך שיתקבל גרף הפונקציה.k() ג. מהי נקודת הקדקוד של הפרבולה?k() = 2-4 האם קדקוד הפרבולה הוא נקודת המינימום או נקודת המקסימום של הפונקציה?k() ד. האם גרף הפונקציה k() = 2-4 חותך את ציר X? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ה. האם גרף הפונקציה k() = 2-4 חותך את ציר Y? אם כן - באילו נקודות? אם לא - הסבירו מדוע. ו. מהו ציר הסימטרייה של גרף הפונקציה?k() = 2-4 ז. התבוננו בגרף וענו: עבור אילו ערכים של ערכי הפונקציה חיוביים? שליליים? 0? ח. היעזרו בגרף ופתרו את המשוואות. 2-4 = = = = 2 2 נתונה פונקציה ריבועית ).g() = ( - 4)(4 - חיזוק א. באילו נקודות הגרף של g() חותך את ציר X? מדוע? ב. מהם שיעורי הקדקוד? ג. האם נקודת הקדקוד היא מינימום או מקסימום של הפונקציה? הסבירו. ד. סרטטו סקיצה של הגרף. ה. עבור אילו ערכים של ערכי g() חיוביים? שליליים? 0? ו. עבור אילו ערכים של הפונקציה g() יורדת? עולה? 22 במשולש שווה שוקיים הגובה ארוך פי שניים מהבסיס. שטח המשולש 25 סמ"ר. מה אורך הבסיס? פונקציה ריבועית תרגול נוסף 23 באוסף מלבנים אורכי הצלעות הם ס"מ ו ) - 4( ס"מ. א. לכל המלבנים יש אותו היקף. מהו? ב. כתבו ביטוי המתאר את שטחי המלבנים. ג. סרטטו סקיצה של גרף הפונקציה המתארת את שטחי המלבנים. ד. עבור אילו ערכים של הפונקציה מתארת את שטחי המלבנים? ה. מהו הערך של שעבורו ערך הפונקציה הוא מקסימלי? ו. מהו המלבן בעל השטח המקסימלי באוסף? מהם אורכי צלעותיו ומה שטחו? 40

41 תשובות עמ' 2( 4 א. לא פונקציה ב. לא פונקציה ג. פונקציה ד. פונקציה עמ' )4 5 ב, ג, ה )5 ב, ג )6 ד a = -3, b = 2, c = 5 ;f() = ז. + 0 ; f() = 2 + ;f() = ג. a = -3, b = 22, c = -7 ;f() = א. )7 a =, b =, c = 0 a =, b = -3, c = 9 ;f() = ז. a =, b = -6, c = 64 ;f() = ו. a = 25, b = 0, c = - 8( ז. למשל, )0,0( נקודת החיתוך של גרף הפונקציה עם הצירים, = 0 (0)h h(), עולה כאשר > 0 ויורדת כאשר < 0, ערכי עמ' 6 הפונקציה h() חיוביים כאשר 0 9( ב. נקודות החיתוך עם ציר X: )0,( ו ) 0,5(; נקודת החיתוך עם ציר Y: )5-,0( ג. ערכי הפונקציה h() שליליים כאשר < וכאשר > 5, חיוביים כאשר < 5,< אפס כאשר = ו 5 = ד. נקודת המקסימום 4( )3, ה. h() יורדת כאשר > 3 ועולה כאשר < 3 )2 א. 0( )0, ב. ציר Y ג. = 9 f(-3) f(- 2 ) = 4, f( 2 ) =, f(0) = 0, f(3) = 9, ד. = 3 = -3, ה. אין פתרון ו. = )2 א. = 3 = -8, ב. = 27 ג. - = = 3, ד. = 0.5 =, ה. -7 = = 0, ו. = 0 ז. = 5 עמ' עמ' 9 ח. -3 = ט. = 3 )3 = 0.5, א. = 5 = -5, ב. אין פתרון ג. = 7 = -7, ד. אין פתרון עמ' )4 0 א. A ב. B ג. 0) A(3, ו ( 6 - B(0, )5 א. A ו C ב. B ג.( 0 C(-8, A(2, 0), B(0, -6), )6 ב. 0) (-, 0), (3, ג. -6) (0, עמ' )7 א. 0) (2, 0), (-7, ב. -4) (0, חיתוך עם ציר X חיתוך עם ציר Y חיתוך עם ציר X חיתוך עם ציר Y עמ' )8 2 א. כן ב. = 2 ; 0) (2, ג. 4) (0, )0 (0, 9) (0, ) (0, -9) (3, 0) (0, -5) א. 0) (5, 0), (-3, ב. ד. ה. אין אין (0, 0) (0, 2) (0, 0) ג. 0) (4, 0), (-3, ו. נקודת אפס אחת g(), p(), r() נקודות האפס (-3, 0), (3, 0) (7, 0) (-3, 0) (-2, 0) אין (4, 0) אין נקודות אפס כלל h() חיתוך עם ציר Y (0, -9) (0, 49) (0, -2) (0, 2) (0, 3) (0, 6) פונקציה ריבועית תשובות שתי נקודות אפס עמ' ( 3 ד. f(), k(), m(), t(), s() ריבועית קווית f() עמ' )3 4 V א. V ב. V ג. V ד. V ה. V ו. 4

מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ ÈÓˆÚ Â Ú ÂÁ

מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ ÈÓˆÚ Â Ú ÂÁ מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ ÈÓˆÚ Â Ú ÂÁ מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ תוכן העניינים א. מספרים מכוונים על ציר המספרים................. ב. השוואת מספרים

קרא עוד

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את

קרא עוד

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,

קרא עוד

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה יש לפתור את כל השאלות עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו

קרא עוד

Microsoft Word - hedva 806-pitronot-2011.doc

Microsoft Word - hedva 806-pitronot-2011.doc ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על

קרא עוד

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים

קרא עוד

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי  שכונה מערבית, רח' הפסגה 17 כרמיאל דואל: עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30

קרא עוד

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) 5 עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי 5

קרא עוד

HaredimZ2.indb

HaredimZ2.indb יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי יחידות

קרא עוד

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

ע 003 מרץ 10 מועד מיוחד פתרונות עפר בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר

קרא עוד

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63> 1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $

קרא עוד

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, ,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא

קרא עוד

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה - יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. התייחסות רצינית להכנת העבודה היא תנאי

קרא עוד

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63> < 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה - פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים

קרא עוד

Microsoft Word - 38

Microsoft Word - 38 08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60

קרא עוד

מתמטיקה של מערכות

מתמטיקה של מערכות מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות

קרא עוד

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C 8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות

קרא עוד

Microsoft Word - אלגברה מעורב 2.doc

Microsoft Word - אלגברה מעורב 2.doc תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz

קרא עוד

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

א. מערכות צירים א. 1. מערכת צירים - זוגות סדורים ושיעורים מגלים לומדים 10. פונקציות מגלים ולומדים במערכת הרחובות ברובע מנהטן בניו-יורק יש שני סוגים של

א. מערכות צירים א. 1. מערכת צירים - זוגות סדורים ושיעורים מגלים לומדים 10. פונקציות מגלים ולומדים במערכת הרחובות ברובע מנהטן בניו-יורק יש שני סוגים של א. מערכות צירים א.. מערכת צירים - זוגות סדורים ושיעורים מגלים לומדים. פונקציות במערכת הרחובות ברובע מנהטן בניו-יורק יש שני סוגים של רחובות: שדרות בכיוון מאונך ויותר מ- רחובות בכיוון מאוזן. ראו דוגמה. לרחובות

קרא עוד

מתמטיקה לכיתה ח פונקציה קווית חלק ב מערכות משוואות הרחבה

מתמטיקה לכיתה ח פונקציה קווית חלק ב מערכות משוואות הרחבה מתמטיקה לכיתה ח פונקציה קווית חלק ב מערכות משוואות הרחבה צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו,

קרא עוד

עב 001 ינואר 12 מועד חורף פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית

קרא עוד

Limit

Limit פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:

קרא עוד

ע 001 ינואר 10 מועד חורף פתרונות עפר

ע 001 ינואר 10 מועד חורף פתרונות עפר בגרות ע 00 ינואר 0 שאלון 50 הציר האופקי, ציר ה-, x מתאר את הזמן שעובר, בשניות, מתחילת השחייה כל משבצת היא בת 0 שניות הציר האנכי, ציר ה - y, מתאר את המרחק מקצה הבר כה כל משבצת היא בת 0 מטר כאשר הקו עולה

קרא עוד

Microsoft Word פרק 16 - פתרון משוואות רמה א

Microsoft Word פרק 16 - פתרון משוואות רמה א 0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.

קרא עוד

סז 002 נואר 07 מועד חורף פתרונות עפר

סז 002 נואר 07 מועד חורף פתרונות עפר הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות

קרא עוד

בחינה מספר 1

בחינה מספר 1 תוכן העניינים בחינה מספר 1 4 אלגברה: 4 חשבון דיפרנציאלי ואינטגרלי: בחינה מספר 6 אלגברה: 6 חשבון דיפרנציאלי ואינטגרלי: 7 בחינה מספר 3 8 אלגברה: 8 חשבון דיפרנציאלי ואינטגרלי: 9 בחינה מספר 41 אלגברה: 01 חשבון

קרא עוד

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יחל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא

קרא עוד

תרגול 1

תרגול 1 תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת

קרא עוד

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...

קרא עוד

Microsoft Word - solutions.doc

Microsoft Word - solutions.doc תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה

קרא עוד

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,65 באר-שבעISRAEL 058P.O.B. 65, BEER SHEVA 8 05, המזכירות האקדמית המרכז ללימודים קדם אקדמיים אלגברה - נוסחאות הכפל מקוצר גיליון תרגילים מס'

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) - עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לכל תלמידי

קרא עוד

08-78-(2004)

08-78-(2004) שאלון 00 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן

קרא עוד

mivhanim 002 horef 2012

mivhanim 002 horef 2012 מבחן מספר 1 (שאלון 00 חורף תשע"ב) בשאלון זה שש שאלות. תשובה מלאה לשאלה מזכה ב- 5 נקודות. מותר לך לענות, באופן מלא או חלקי, על מספר שאלות כרצונך, אך סך הנקודות שתוכל לצבור לא יעלה על. 100 אלגברה (x+ 5)

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63> משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת

קרא עוד

אי שוויונים ממעלה ראשונה לארבע יחידות

אי שוויונים ממעלה ראשונה לארבע יחידות אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.

קרא עוד

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם

קרא עוד

Microsoft Word - two_variables3.doc

Microsoft Word - two_variables3.doc משימה שני תלמידים פתרו את מערכת המשוואות הבאה y 7 2y 2. שי פתר בשיטת השוואת מקדמים: I. 2x y 7 II. 2x 2y 2 דנה פתרה בשיטת הצבה: I. 2x y 7 II. 2x 2y 2 I. y = 7 2x II. 2x 2(7 2x) = 2 2x 4 + 4x = 2 6x 4 =

קרא עוד

Microsoft Word - dvar hamaarehet_4.8.docx

Microsoft Word - dvar hamaarehet_4.8.docx מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם

קרא עוד

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ -28- לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' 107-105(.Ⅰ 5 656 הסבר נדב יצא מביתו )נקודה (, צעד 5 ק"מ לכיוון מזרח, והגיע למסעדה

קרא עוד

îáçï îúëåðú îñ' 1

îáçï îúëåðú îñ'  1 5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä

קרא עוד

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 סמ, כמו כן אחת מצלעות המקבילית שווה ל- 8 סמ. מהו גודלה של שאר צלעות המקבילית בסמ?.1 8 נתונה תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה מקבילית שצלעותיה שוות ל- 3 ס"מ ול- 7 ס"מ. מהו הטווח

קרא עוד

ðñôç 005 î

ðñôç 005 î ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,

קרא עוד

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63> הסברים לפרק כמותי : :úåðåëðä úåáåùúä 0 9 8 7 6 5 5 0 9 8 7 6 5. התשובה הנכונה היא: (). עלינו לקבוע איזה מהביטויים שבתשובות אינו זוגי. משום שהשאלה עוסקת בתכונת הזוגיות, ננסה ללמוד מהנתון על זוגיותם של x

קרא עוד

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של

קרא עוד

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות

קרא עוד

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0 22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור

קרא עוד

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשעט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t

קרא עוד

Microsoft Word - 28

Microsoft Word - 28 8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

Microsoft Word - beayot tnua 3 pitronot.doc

Microsoft Word - beayot tnua 3 pitronot.doc ק( בעיות מילוליות - בעיות תנועה.7 פתרון: א. נסמן : קמ"ש קמ"ש מהירותו של הולך הרגל. מהירותו של רוכב האופניים. משך זמן הליכתו של הולך הרגל מקיבוץ א' לקיבוץ ב'. משך זמן רכיבתו של רוכב האופניים מקיבוץ א' לקיבוץ

קרא עוד

אנליזה מתקדמת

אנליזה מתקדמת א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:

קרא עוד

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו

קרא עוד

סדרה חשבונית והנדסית

סדרה חשבונית והנדסית .2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

Microsoft Word - shedva_2011

Microsoft Word - shedva_2011 שיטות דיפרנציאליות ואינטגרליות הפקולטה להנדסה אוניברסיטת תל אביב גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

במתמטיקה בגרויות + פתרונות וידאו מלאים (3 יח ל שאלון 182/183) וידאו מלאים לכל השאלות בחוברת ב- MY.GEVA.CO.IL פתרונות הבחינות הראשונות במתנה! שתי אפליק

במתמטיקה בגרויות + פתרונות וידאו מלאים (3 יח ל שאלון 182/183) וידאו מלאים לכל השאלות בחוברת ב- MY.GEVA.CO.IL פתרונות הבחינות הראשונות במתנה! שתי אפליק במתמטיקה בגרויות + פתרונות וידאו מלאים ( יח ל שאלון 8/8) וידאו מלאים לכל השאלות בחוברת ב- MYGEVACOIL פתרונות הבחינות הראשונות במתנה! שתי אפליקציית MYGEVA חדש! אותי מאחור חפשו לשנת 08-09 עדכני הקדמה מורים

קרא עוד

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

פונקציה מסדר ראשון;  הגדרת קו ישר: - הצגה עי ביטוי אלגברי וגרפי המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה

קרא עוד

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל

קרא עוד

rizufim answers

rizufim answers ÌÈÙÂˆÈ מדריך למורה פעילות זו היא פעילות חקר לבדיקת כל אפשרויות הריצוף שבהן סידור מצולעים סביב קודקוד הוא זהה. המצולעים שבהם ישתמשו התלמידים הם: משולש שווה צלעות, משושה משוכלל וריבוע - כולם בעלי צלע באותו

קרא עוד

מצגת של PowerPoint

מצגת של PowerPoint שלום לתלמידי י"א חמש יחידות מתמטיקה גיל קרסיק מורה למתמטיקה בשעה וחצי הקרובות נדבר על שאלון 806 סדרות הנדסיות וחשבוניות ארבעה תרגילים שהיו בבחינות בגרות ארבעה טיפים )טיפ אחד אחרי כל תרגיל שנפתור הערב(

קרא עוד

Microsoft Word - beayot hespek 4 pitronot.doc

Microsoft Word - beayot hespek 4 pitronot.doc בעיות מילוליות - בעיות הספק.6 פתרון: נסמן: מספר המכשירים שתיקן טכנאי א' בשעה אחת (קצב עבודתו). ( ) כל אחד מהטכנאים תיקן מספר המכשירים שתיקן טכנאי ב' בשעה אחת (קצב עבודתו). 0 מכשירים, לכן: 0 שעות משך זמן

קרא עוד

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים כיתה

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים   כיתה שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים www.kefwithjeff.org כיתה Happy New Year 8 0 80 80 0 8 8 8 8 8 08 8 0 0 בכל שורה ובכל טור יש את המספרים עד כולל.

קרא עוד

בגרות סוג הבחינה: מדינת ישראל קיץ תשע"ח, 2018 מועד הבחינה: משרד החינוך , מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה:

בגרות סוג הבחינה: מדינת ישראל קיץ תשעח, 2018 מועד הבחינה: משרד החינוך , מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יחל נספח: א. משך הבחינה: בגרות סוג הבחינה: מדינת ישראל קיץ תשע"ח, 2018 מועד הבחינה: משרד החינוך 657 036003, מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה: שעתיים. ב. מבנה השאלון ומפתח ההערכה: פיזיקה קרינה וחומר

קרא עוד

הסבר: מחיר ק"ג תפוזים הוא 7 שקלים.. אמהי העלות של 2 ק"ג תפוזים?. במהי העלות של 3 ק"ג תפוזים?. גמהי העלות של 10 ק"ג תפוזים?. דמהי הע

הסבר: מחיר קג תפוזים הוא 7 שקלים.. אמהי העלות של 2 קג תפוזים?. במהי העלות של 3 קג תפוזים?. גמהי העלות של 10 קג תפוזים?. דמהי הע הסבר: מחיר ק"ג תפוזים הוא 7 שקלים.. אמהי העלות של 2 ק"ג תפוזים. במהי העלות של ק"ג תפוזים. גמהי העלות של 10 ק"ג תפוזים. דמהי העלות של 50 ק"ג תפוזים. המהי העלות של a ק"ג תפוזים -1- המשתנה משתנים וביטויים

קרא עוד

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,

קרא עוד

תוצאות סופיות מבחן אלק' פיקוד ובקרה קיץ 2014

תוצאות סופיות מבחן  אלק' פיקוד ובקרה קיץ  2014 תוצאות סופיות למערכות אלק' פיקוד ובקרה להנדסאים וטכנאים מועד קיץ תשע"ד 7/2014 פותר המבחן: מתי דוד למרות מאמצי לפתור נכון, יתכן ונפלו טעויות בפתרון, אשמח לקבל הערותיכם בדוא"ל : @hotmail.com ההצלחה שלי היא

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשעב בחינת סיום, מועד א', הנחי אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך

קרא עוד

חלק א' – הקדמה

חלק א' – הקדמה ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי

קרא עוד

"עשר בריבוע", כיתה ז' - מדריך למורה 1. משתנה וביטוי אלגברי 1. משתנה וביטוי אלגברי רקע הפרק "משתנה משתנה וביטוי אלגברי" פותח את השנה ואת לימוד האלגברה.

עשר בריבוע, כיתה ז' - מדריך למורה 1. משתנה וביטוי אלגברי 1. משתנה וביטוי אלגברי רקע הפרק משתנה משתנה וביטוי אלגברי פותח את השנה ואת לימוד האלגברה. רקע הפרק "משתנה משתנה וביטוי אלגברי" פותח את השנה ואת לימוד האלגברה. בפרק אנו עוסקים תחילה בחוקיות. מהי חוקיות? המושג חוקיות, REGULARITY באנגלית, הוא מושג בסיסי להבנת תופעות טבע, רוב התופעות במדע וכן התנהגות

קרא עוד

Microsoft Word - 14

Microsoft Word - 14 9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את

קרא עוד

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63>

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63> מתמטיקה א' לכלכלנים גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם

אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשעג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג,.6.013 משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם 8 עמודי שאלון )כולל עמוד זה(. עליכם לכתוב את התשובות על

קרא עוד

WinZIP תוכנה לדחיסת קבצים ספטמבר 2007

WinZIP תוכנה לדחיסת קבצים ספטמבר 2007 WinZIP תוכנה לדחיסת קבצים ספטמבר 2007 תשס"ח 2007. כל הזכויות שמורות לאוניברסיטה הפתוחה. בית ההוצאה לאור של האוניברסיטה הפתוחה, רח' רבוצקי 108 ת, "ד 808, רעננה 43107. The Open University of Israel, 108

קרא עוד

המכללה האקדמית לחינוך ע"ש דיו ילין

המכללה האקדמית לחינוך עש דיו ילין ירושלים, אייר, תשע"ה למנהלי בתי הספר ולרכזי ומורי המתמטיקה שלום רב אנו מבקשים לעניין אתכם בתכנית " הכשרת מורים להוראת תלמידים ברוכי כישרון במתמטיקה ובמדע ומסגרת לטיפוח תלמידים ברוכי כישרון במתמטיקה ובמדע"

קרא עוד

משוואות דיפרנציאליות מסדר ראשון

משוואות דיפרנציאליות מסדר ראשון אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g

קרא עוד

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כץ, דר עופר נימן, דר סטוארט סמית, דר נתן רובין, גב' אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט

קרא עוד

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0 פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות

קרא עוד

מבוא לתכנות ב- JAVA תרגול 7

מבוא לתכנות ב- JAVA  תרגול 7 מבוא לתכנות ב- JAVA תרגול 8 תזכורת - מבנה של פונקציה רקורסיבית.2 פונקציה רקורסיבית מורכבת משני חלקים עיקריים 1. תנאי עצירה: מקרה/מקרים פשוטים בהם התוצאה לא מצריכה קריאה רקורסיבית לחישוב צעד רקורסיבי: קריאה

קרא עוד

MathType Commands 6 for Word

MathType Commands 6 for Word 0 אלגברה לינארית גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות תלמידים וטעויות נפוצות וחוזרות

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדו

YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדו YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדול. השמיכה מקבלת צורה! מקרא עין שרשרת עין שטוחה חצי

קרא עוד

kefel 1-34

kefel 1-34 מטח המרכז לטכנולוגיה חינוכית שבילים מתמטיקה לבית הספר היסודי מדריך למורה תוכן העניינים מבוא לחוברות "שבילים" כיתה ד'....... 3 כפל במאונך.......................... 5 מספרים ראשוניים ומספרים פריקים.....

קרא עוד

שאלהIgal : מערכים דו מימדיים רקורסיה:

שאלהIgal : מערכים דו מימדיים רקורסיה: אוניברסיטת בן גוריון בנגב מספר נבחן : תאריך המבחן: כ"ג חשון תשע"ח 12/11/17 שמות המורים: ציון סיקסיק א' ב- C תכנות מבחן ב: 202-1-9011 מס' הקורס : הנדסה מיועד לתלמידי : ב' מועד קיץ סמ' שנה תשע"ז 3 שעות משך

קרא עוד

1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם

1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם 1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר: 1.מחשבון. נספח הנוסחאות

קרא עוד

" תלמידים מלמדים תלמידים."

 תלמידים מלמדים תלמידים. " תלמידים מלמדים תלמידים." פרוייקט של צוות מתמטיקה, בית ספר כפר-הירוק איך הכל התחיל... הנהלת בית הספר העל-יסודי הכפר הירוק יזמה פרויקט בית ספרי: "למידה ללא מבחנים- הוראה משמעותית", צוות המתמטיקה החליט

קרא עוד

<4D F736F F D20EBE9FAE420E7202D20E0E7E5E6E9ED202D20E3F4E920F1E9EBE5ED20ECFAECEEE9E3E9ED D20F8EEE420E0202D20E8E5F4F120382D332

<4D F736F F D20EBE9FAE420E7202D20E0E7E5E6E9ED202D20E3F4E920F1E9EBE5ED20ECFAECEEE9E3E9ED D20F8EEE420E0202D20E8E5F4F120382D332 דף עבודה אחוזים באילו מהאיורים הבאים החלק הצבוע מהווה אותו אחוז מהם? מהו גודלו החלק ואיזה אחוז הוא מהווה מהם? (1) (ה) התבוappleappleו באיור משמאל. רשמו איזה חלק מהווה החלק הצבוע בשבר פשוט ובכתיב אחוזים.

קרא עוד

תרגיל 5-1

תרגיל 5-1 תרגיל 1 יחסי העדפה, פונקציות תועלת, עקומות אדישות וקווי תקציב כל השאלות להלן מתייחסות לצרכן שהעדפותיו מוגדרות על סלי צריכה של שני מוצרים. העדפות אלה הן רציונאליות (ז"א, מקיימות את תכונות השלמות והטרנזיטיביות).

קרא עוד