תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L
|
|
- אגם נחמני
- לפני5 שנים
- צפיות:
תמליל
1 תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים, קבעו האם הוא נוסחה אטומית, נוסחה, שם עצם, פסוק או אף אחד מהנ"ל (שימו לב שאותו ביטוי יכול להתאים לכמה קטגוריות). אם הביטוי הוא נוסחה, ציינו מהם המשתנים החופשיים שלה. (א) L(L(x)) חסר משמעות, סימן יחס "מופעל" על נוסחה. (ב) d) R(G(c, T (d)), c, נוסחה, נוסחה אטומית, פסוק (ג) x)) x y(t (x, y) = T (y, חסר משמעות, T סימן פונקציה חד מקומי. (ד) L(y) נוסחה, משתנים חופשיים: y (ה) y)) L(x) y(r(c, c, נוסחה, משתנים חופשיים: x (ו) d)) G(b, G(c, שם עצם, שימו לב כי b הוא משתנה חופשי (ז) L(x)) x(k חסר משמעות, K סימן יחס חד מקומי. (ח) z) G(x, y) G(y, z) G(x, חסר משמעות, קשרים לוגיים בין שמות עצם. (ט) )) 5 x 4, x 5 (R(x 1, x 4, x 5 ) R(x 2, x 4, x 5 ) R(x 3, x 4, x 5 ) (x 4 = x נוסחה, משתנים חופשיים: x 1, x 2, x 3 2. תהי } F L =,L},R השפה עם סימן יחס חד מקומי L, סימן יחס דו מקומי R וסימן פעולה דו מקומי.F תהי X קבוצה ויהי, τ, M = P(X), מבנה מפרש לשפה L כאשר P(X) τ קבוצה כלשהי. (א) כתבו נוסחאות בשפה L המתארות במבנה M את העובדות הבאות: x i. היא הקבוצה הריקה. ϕ (x) := y(r(y, x) y = x) ϕ (x) := y(r(x, y)) ϕ (x) := y(f (y, x) = x) 1
2 x היא יחידון..ii ϕ s (x) := ϕ (x) y(r(y, x) (y = x ϕ (y)).iii בכל איבר השייך ל τ יש לפחות שני איברים. ϕ := x(l(x) (ϕ (x) ϕ s (x)) ϕ := x(l(x) y z(ϕ s (y) ϕ s (z) R(y, x) R(z, x) y = z)) ϕ := x(ϕ (x) L(x)) x(ϕ s (x) L(x)) τ. איבר של הוא חיתוך של שתי קבוצות השייכות ל τ.iv ψ := x y(l(x) L(y) L(F (x, y))) (ב) הוכיחו כי אם נוסחה iv נכונה במבנה M, אז חיתוך של כל מספר סופי (גדול מ 0 ) של קבוצות השייכות ל τ הוא איבר של τ. הוכחה: נוכיח טענה זו באינדוקציה. נגדיר קבוצה {0} {לכל X τ כך ש n X = נכון ש τ A = {n N X A היא קבוצה של טבעיים ש 0 שייך לה. עלינו רק לבדוק את צעד האינדוקציה כדי להסיק.A = N נניח כי.n A נראה כי A,.n + 1 תהי X τ קבוצה בת + 1 n איברים..n + 1 = 1 A כלומר. X = x τ ולכן x τ לאיזשהו X = {x} אז :n = 0 > 0 :n נקבע x X כלשהו ונסמן {x}.x = X \ מהנחת האינדוקציה, כיוון ש X בת n איברים, X τ. מאמיתות הנוסחה מסעיף iv במבנה, נובע גם,x X τ אבל למעשה X X = x. כיוון ש X כללית,.n + 1 A ממשפט האינדוקציה נקבל כי A. = N הטענה הראשית נובעת מעובדה זו בבירור. (ג) כתבו במילים את משמעות הנוסחאות הבאות במבנה M, נסו למצוא ניסוח מדויק אך תמציתי ככל הניתן: ϕ 1 := y(r(y, x)).i משמעות: האיבר x הוא הקבוצה X. ϕ 2 := x(f (y, x) = x).ii משמעות: האיבר y הוא הקבוצה X 2
3 ϕ 3 := w[(r(x, w) R(y, w)) v(r(v, w))] z[r(f (x, y), z)].iii משמעות: x הוא המשלים של y ביחס ל X. הסבר: קבוצה שגם x וגם y חלקיות לה, היא בהכרח X (כל הקבוצות חלקיות לה). כלומר x. y = X בנוסף, החיתוך של x ו y חלקי לכל קבוצה, ובפרט לקבוצה הריקה. כלומר, = y.x אז בסה"כ.x = X \ y ϕ 4 := x y((r(x, y) L(x)) L(y)).iv משמעות: τ סגורה כלפי מעלה בהכלה. כלומר, כל קבוצה שמכילה קבוצה מ τ, שייכת ל τ גם כן. (ד) מצאו קבוצה X וקבוצה { } \ P(X) τ אינסופית כך שבמבנה המתואר M מתקיימות הנוסחאות מסעיפים א. iii, א. iv, ו ג. iv. דוגמא: X = N τ = {A P(N) {56, 100} A} X = N τ = {A P(N) סופית N \ A} דוגמא נוספת (ומעניינת יותר): 3. תהי A קבוצה לא ריקה כלשהי. נזכור כי {1 A,0} היא קבוצת כל הפונקציות מ A ל { 1,0}. נגדיר פונקציות: min : {0, 1} A {0, 1} A {0, 1} A max : {0, 1} A {0, 1} A {0, 1} A D : {0, 1} A {0, 1} A {0, 1} A min(f, g)(x) = min{f(x), g(x)} max(f, g)(x) = max{f(x), g(x)} D(f, g)(x) = f(x) g(x) בשאלה זו, משמעות הסימן \ היא חיסור קבוצות ומשמעות הסימן ( ) היא פעולת המשלים ביחס ל A. (א) הוכיחו כי המבנים, P(A), ו max {1 A, min,,0} איזומורפיים זה לזה ע"י מציאת איזומורפיזם מפורש. פתרון: נתבונן בפונקציות G : P(A) {0, 1} A G(B) = (B {1}) (A \ B {0}) H : {0, 1} A P(A) H(f) = {a A f(a) = 1} נשים לב G H = Id {0,1} A וכן P(A) H G = Id ולכן G, H חח"ע ועל והפוכות זו לזו. לכל B, A נסמן לשם נוחות G(B) f. B = נראה עם כן כי G היא אכן איזומורפיזם: 3
4 f B C (x) = 1 x B או x C f B (x) או = 1 f C (x) = 1 max{f B (x), f C (x)} = 1 max{f B, f C }(x) = 1 f B C (x) = 1 x B וגם x C אז G(C)}.G(B C) = max{g(b), כמו כן, f B (x) וגם = 1 f C (x) = 1 min{f B (x), f C (x)} = 1 min{f B, f C }(x) = 1 אז גם G(C)} G(B C) = min{g(b), כנדרש. (ב) מצאו פונקציות F D, F M, F C כך שהפונקציה שמצאתם בסעיף א' היא איזומורפיזם בין המבנים. {0, 1} A, min, max, D, F M, F C ו P(A),,, F D, \, ( ) פתרון: ההוכחה כי הפונקציה G היא אכן איזומורפיזם גם עם הפונקציות החדשות היא כמו בסעיף א'. הפונקציות הן: F D (B, C) = B C F M (f, g)(x) = max{0, f(x) g(x)} F C (f)(x) = 1 f(x) (ג) האם תוכלו למצוא פתרון שונה לסעיף ב'? נמקו את קביעתכם פתרון: לא, הדרישה מפונקצית האיזומורפיזם מכתיבה בדיוק את ערכי הפונקציות F. D, F M, F C לדוגמה, ידוע כי חייב להתקיים השוויון G(C)),G(F D,B) ((C = D(G(B), ולכן בהכרח עלינו להגדיר G(C))).F D (B, C) = H(D(G(B), הוכיחו כי קיימת פונקציה f : Z N חח"ע ועל N. (א) 4. פתרון: נתבונן בפונקציה { f : N Z f(n) = n/2, זוגי n (n + 1)/2, אי זוגי n זוהי פונקציה חח"ע ועל שכן היא הפיכה ע"י { 2z, z 0 g : Z N g(z) = 1 2z, z < 0 4
5 (ב) הוכיחו כי קיימת פונקציה דו מקומית F : Z Z Z כך שבמבנה F,Z כל האיברים גדירים. רמז: דף תרגילים 6 סעיף 6.א, דף תרגילים 8 סעיף 4.א. פתרון: מהרמזים נסיק כי במבנה +,N כל האיברים גדירים. תהי h : N Z חח"ע ועל כפי שהוכחנו שקיימת בסעיף א'. לכל z 1, z 2 Z נגדיר F (z 1, z 2 ) = h(h 1 (z 1 ) + h 1 (z 2 )) אז בודאי ש h היא איזומורפיזם בין המבנים +,N ו F,Z. מכיוון שאיזומורפיזם שומר ערכי אמת, ניתן להסיק כי כל האיברים גדירים במבנה. 5. תהי L השפה בעלת סימן פונקציה דו מקומי יחיד F. לכל זוג מהמבנים הבאים לשפה L, מצאו פסוק הנכון באחד ולא נכון בשני. M 1 = R, M 2 = P(N), M 3 = N N, M 4 = C, x y(f (x, x) = F (y, y)) x y(f (x, y) = F (y, x)) x y(f (y, y) = x) פתרון: נכון ב M 2 ולא נכון בשאר: לא נכון ב M 3 ונכון בשאר: נכון ב M 4 ולא נכון ב M: 1 5
תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב
תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,
Microsoft Word - SDAROT 806 PITRONOT.doc
5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את
תאריך הבחינה 30
אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א
מבוא ללוגיקה ולתורת הקבוצות
תורת הקבוצות מושגים בסיסיים מבוא ללוגיקה ולתורת הקבוצות חוברת תרגילים כתוב באופן מפורש את הקבוצות הבאות: 5 2x + 3< היא קבוצת המספרים השלמים המקיימים : 7 B היא קבוצת האותיות הקודמות לאות f באלף-בית הלטיני.
מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו
מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה
מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים
מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t
Microsoft Word - Sol_Moedb10-1-2,4
הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל
Untitled
2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim
<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>
האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע
אנליזה מתקדמת
א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:
Microsoft Word - hedva 806-pitronot-2011.doc
ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על
חשבון אינפיניטסימלי מתקדם 1
חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי
. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ
. [,] ו 0 f() f() עמוד מתוך 6 ז. אולחא מס' הקורס 97 חדו''א הנ מכונות f ( ) ( )( )( ) f (,), תשובות I ) פונ' לכן קיים פתרון רציפה וגזירה בקטע כך ש 0 ) (? f ( ) +, ± ± 0.58 (, ),.58,.4 יש n פעמים להשתמש
עב 001 ינואר 12 מועד חורף פתרונות עפר
ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית
2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק
דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור
תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra
תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,
מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו
מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות
ע 003 מרץ 10 מועד מיוחד פתרונות עפר
בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:
Slide 1
מבוא למדעי המחשב תירגול 4: משתנים בוליאניים ופונקציות מבוא למדעי המחשב מ' - תירגול 4 1 משתנים בוליאניים מבוא למדעי המחשב מ' - תירגול 4 2 ערכי אמת מבחינים בין שני ערכי אמת: true ו- false לכל מספר שלם ניתן
תרגול 1
תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת
Microsoft Word - ExamA_Final_Solution.docx
סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד
פתרונות לשאלות ממבחנים עוזי וישנה, 1996 השאלות לקוחות ממבחנים של פרופ' א. רואן. הפתרונות מוצגים באופן תמציתי, ויתכן שבמבחן כדאי להרחיב יותר. קובץ זה נ
פתרונות לשאלות ממבחנים עוזי וישנה, 1996 השאלות לקוחות ממבחנים של פרופ' א. רואן. הפתרונות מוצגים באופן תמציתי, ויתכן שבמבחן כדאי להרחיב יותר. קובץ זה נכתב במקור בתוכנת,Oren ותורגם באופן אוטומטי למחצה ל
Microsoft Word - 01 difernziali razionalit
פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות
ðñôç 005 î
ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,
. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים
שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4
אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'
אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט
מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי
מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל
Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc
הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,
מצגת של PowerPoint
שלום לתלמידי י"א חמש יחידות מתמטיקה גיל קרסיק מורה למתמטיקה בשעה וחצי הקרובות נדבר על שאלון 806 סדרות הנדסיות וחשבוניות ארבעה תרגילים שהיו בבחינות בגרות ארבעה טיפים )טיפ אחד אחרי כל תרגיל שנפתור הערב(
Limit
פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:
פרויקט "רמזור" של קרן אביטל בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו
בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנושא הפונקציות הנלמד בכתה ט' בכל הרמות. עזרי ההוראה בהם נשתמש: מחשב, ברקו, דפי עבודה
áñéñ åîéîã (ñéåí)
מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא
תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות
תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...
<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>
משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת
PowerPoint Presentation
מבוא למדעי המחשב תירגול 6: כתובות ומצביעים 1 תוכנייה מצביעים מצביעים ומערכים, אריתמטיקה של מצביעים 2 3 מצביעים תזכורת- כתובות זיכרון הזיכרון כתובת התא #1000 #1004 #1008 ערך השמור בתא תא 10-4 לא מאותחל
הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור
תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(
פתרונות לדף מס' 5
X הוכיחו כי קבוצה X סגורה אמ"מ פתוחה P נקודה כלשהי עלינו למצוא כך ש- X P X פתרון: תהא X קבוצה סגורה ניקח נניח בשלילה כי לא קיים כזה, ז"א לכל קיימת כך ש- X מכיוון ש- P P נסיק כי d P, P סגורה מתקיים P B
תוכן העניינים: פרק צמצומים ומימושים של פונקציות בוליאניות... 2 צמצומים של פונקציות באמצעות מפת קרנו:...2 שאלות:... 2 תשובות סופיות:... 4 צמצום
תוכן העניינים: פרק 2 3 צמצומים ומימושים של פונקציות בוליאניות 2 צמצומים של פונקציות באמצעות מפת קרנו: 2 שאלות: 2 תשובות סופיות: 4 צמצום באמצעות שיטת 6:QM שאלות: 6 תשובות סופיות: 7 מימושים בעזרת פונקציות
Microsoft Word - 14
9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את
הגנה - שקפי תרגול
תרגול 9 סיסמאות חד פעמיות הגנה במערכות מתוכנתות )הגנה ברשתות( חורף תשע"ז 1 תזכורת בקרת כניסה אימות זהות המשתמש למניעת התחזות קבלת שירות שהתוקף אינו זכאי לו קבלת גישה למידע פרטי ולביצוע פעולות בד"כ נעשה
שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ
שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם
דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב
דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של
Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc
עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים
סדנת תכנות ב C/C++
פקולטה: מדעי הטבע מחלקה: מדעי המחשב שם הקורס: מבוא למחשבים ושפת C קוד הקורס: 2-7028510 תאריך בחינה: 15.2.2017 משך הבחינה: שעתיים שם המרצה: ד"ר אופיר פלא חומר עזר: פתוח שימוש במחשבון: לא הוראות כלליות:
מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו
מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן
! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y
!! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) tan ( a a z 0 a z s ds dt (רמז: cos d d ז) d ( ) d ( ) ח) ) מצא את הפתרונות המקיימי :. () 0 ( ). (). () 0 d ( ) d ( ) π. sin ln ) tan cos d cos d
שאלהIgal : מערכים דו מימדיים רקורסיה:
אוניברסיטת בן גוריון בנגב מספר נבחן : תאריך המבחן: כ"ג חשון תשע"ח 12/11/17 שמות המורים: ציון סיקסיק א' ב- C תכנות מבחן ב: 202-1-9011 מס' הקורס : הנדסה מיועד לתלמידי : ב' מועד קיץ סמ' שנה תשע"ז 3 שעות משך
Microsoft Word - solutions.doc
תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה
Microsoft Word B
מרצה: שולי וינטנר. מתרגל: שלמה יונה מבוא למדעי המחשב מועד ב', סמסטר א' תשס"ג, 17/2/03 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: 1. ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב
משוואות דיפרנציאליות מסדר ראשון
אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g
עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות
עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו
תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח
תכנות דינמי פרק 6, סעיפים -6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח בסוף את הטוב ביותר. סכום חלקי sum) (subset הקלט: סדרה
מבוא לתכנות ב- JAVA תרגול 7
מבוא לתכנות ב- JAVA תרגול 8 תזכורת - מבנה של פונקציה רקורסיבית.2 פונקציה רקורסיבית מורכבת משני חלקים עיקריים 1. תנאי עצירה: מקרה/מקרים פשוטים בהם התוצאה לא מצריכה קריאה רקורסיבית לחישוב צעד רקורסיבי: קריאה
PRESENTATION NAME
נכתב ע"י כרמי גרושקו. כל הזכויות שמורות 2010 הטכניון, מכון טכנולוגי לישראל הקצאה דינמית )malloc( מערכים דו-מימדיים סיבוכיות: ניתוח כזכור, כדי לאחסן מידע עלינו לבקש זכרון ממערכת ההפעלה. 2 עד עכשיו: הגדרנו
Microsoft Word - dvar hamaarehet_4.8.docx
מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם
Slide 1
מבוא למדעי המחשב תירגול 7: פונקציות 1 מה היה שבוע שעבר? לולאות מערכים מערכים דו-ממדיים 2 תוכנייה )call by value( פונקציות העברת פרמטרים ע"י ערך תחום הגדרה של משתנה מחסנית הקריאות 3 פונקציות 4 הגדרה של
מבוא למדעי המחשב - חובלים
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב סמסטר ב' תשע"ב בחינת סיום, מועד ב',.02..9.7 מרצה: אורן וימן מתרגלים: נעמה טוויטו ועדו ניסנבוים מדריכי מעבדה: מחמוד שריף ומיקה עמית משך המבחן: שעתיים חומר
Microsoft Word - 38
08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60
א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף
א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון
מקביליות
תכונות בטיחות Safety Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון 2 תזכורת: תכונות זמן ליניארי Linear Time Properties תכונות זמן-ליניארי מתארות קבוצת עקבות שהמערכת צריכה לייצר מכוונים ללוגיקה
עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י
עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם
אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג,.6.013 משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם 8 עמודי שאלון )כולל עמוד זה(. עליכם לכתוב את התשובות על
טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ
טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.
מבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות
מבוא לאנליזה נומרית na191 Assignmnt 2 solution - Finding Roots of Nonlinar Equations y cos() שאלה 1 היכן נחתכים הגרפים של? y 3 1 ושל ממש פתרונות בעזרת שיטת החצייה ובעזרת Rgula Falsi )אין צורך לפתור אנליטית(
שיעור מס' 6 – סבולות ואפיצויות
שיעור מס' 6 סבולות ואפיצויות Tolerances & Fits Tolerances חלק א' - סבולות: כידוע, אין מידות בדיוק מוחלט. כאשר אנו נותנים ליצרן חלק לייצר ונותנים לו מידה כלשהי עלינו להוסיף את תחום הטעות המותרת לכל מידה
פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -
פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים
תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה
תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב
מתמטיקה של מערכות
מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך
Microsoft Word - 28
8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת
אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו
אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', 31.1.2017 מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבוני, דולב שרון הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה
בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,
,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא
סיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב
סיכום אינפי 2 28 ביולי 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך..אינני לוקחת אחריות על מה שכתוב מטה. השימוש
יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר
יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את
מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב
מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. בדקו שכל העמודים ברשותכם. ב. משך המבחן שלוש שעות (180
מקביליות
תכונות שמורה Invariant Properties גרא וייס המחלקה למדעי המחשב אוניברסיטת בן-גוריון 2 בדיקות מודל Checking( )Model מערכת דרישות מידול פירמול בדיקות מודל )Model Checking( מודל של המערכת תכונות פורמליות סימולציה
תוכן העניינים
הוצאת חושבים קדימה הילה קדמן חלק ב יעוץ מקצועי: חיים אברבוך מותאם לתכנית הלימודים החדשה בבתי הספר התיכוניים מהדורה חמישית הוצאת חושבים קדימה ת.ד. 1293 רעות 71908 www.kadman.net הילה קדמן 0522 525527 kadman11@gmail.com
שעור 6
שעור 6 Open addressing אין רשימות מקושרות. (נניח שהאלמנטים מאוחסנים בטבלה עצמה, לחילופין קיים מצביע בהכנסה המתאימה לאלמנט אם אין שרשור). ב- addressing open הטבלה עלולה להימלא ב- factor α load תמיד. במקום
MathType Commands 6 for Word
0 אלגברה לינארית גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות תלמידים וטעויות נפוצות וחוזרות
PowerPoint Presentation
מה הם הגורמים שקובעים את רמת הפעילות הכלכלית, שער הריבית, רמת המחירים ורמת התעסוקה? הפעילות המשותפת במספר שווקים: פעילות ריאלית שוק הסחורות: CIGX-M עקומת IS (r,) שיווי משק ל פעילות מונטרית שוק הכספים:
תרגיל בית מספר 1#
תרגיל בית מספר - 3 להגשה עד 15 באפריל בשעה 23:55 קיראו בעיון את הנחיות העבודה וההגשה המופיעות באתר הקורס, תחת התיקייה.assignments חריגה מההנחיות תגרור ירידת ציון / פסילת התרגיל. הגשה: תשובותיכם יוגשו בקובץ
Microsoft PowerPoint - T-10.ppt [Compatibility Mode]
מבוא למחשב בשפת Matlab לולאות בלוקי try-catch :10 תרגול מבוסס על השקפים שחוברו ע"י שי ארצי, גיתית רוקשטיין, איתן אביאור, סאהר אסמיר וטל כהן עבור הקורס "מבוא למדעי המחשב" נכתב על-ידי רמי כהן,אולג רוכלנקו,
<4D F736F F D20FAF8E2E9EC203220E0F7E520EEE020FAF9F2E1>
66-89 ד"ר דרורה קרוטקין אקונומטריקה למתקדמים א' תרגיל מס' 2 תרגיל חזרה על הפלטים.SPSS ו- GRETL, EVIEWS, STATA ) פלט (STATA שאלה נסמן: - q תפוקה k הון - l עבודה generate float lq= log(q) generate float
הגשה תוך שבוע בשעת התרגול
מרצה: שולי וינטנר. מתרגל: עזרא דאיה. מבוא למדעי המחשב בחינת מועד א', סמסטר א' תשס"ה, 6..5 משך המבחן: שעתיים וחצי. חומר עזר: מותר כל חומר עזר, מלבד מחשב. הנחיות: ודאו כי בטופס שבידיכם 8 עמודים. יש לכתוב
תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה
תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר
מהוא לתכנות ב- JAVA מעבדה 3
מבוא לתכנות ב- JAVA מעבדה 3 נושאי התרגול לולאות ניפוי שגיאות לולאות - הקדמה כיצד הייתם כותבים תוכנית שתדפיס את המספרים השלמים בין 1 ל- 100 בעזרת הכלים שלמדתם עד עתה? חייבת להיות דרך אחרת מאשר לכתוב 100
בגרות סוג הבחינה: מדינת ישראל קיץ תשע"ח, 2018 מועד הבחינה: משרד החינוך , מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה:
בגרות סוג הבחינה: מדינת ישראל קיץ תשע"ח, 2018 מועד הבחינה: משרד החינוך 657 036003, מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה: שעתיים. ב. מבנה השאלון ומפתח ההערכה: פיזיקה קרינה וחומר
08-78-(2004)
שאלון 00 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן
פייתון
שיעור 12: מילונים ברק גונן 1 או מילון, :hash table או,dictionary זוגות של מפתחות keys וערכים values מילון מוגדר על ידי סוגריים מסולסלים { } לדוגמה: מילון שמכיל ציונים, המפתח הוא מספר ת.ז ערך מפתח הגדרה
PowerPoint Presentation
מבוא למדעי המחשב תירגול 2: מבוא לתיכנות ב- C 1 תוכנייה משתנים קלט/פלט משפטי תנאי מבוא למדעי המחשב מ' - תירגול 3 2 משתנים 3 משתנים- תמונת הזיכרון הזיכרון כתובת התא #1000 10-4 לא מאותחל 67 לכל תא בזיכרון
תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0
22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור
שיעור 1
שיעור קצב גדילת פונקציות אנחנו בודקים את היעילות האסימפטותית של האלגוריתם, כיצד גדל זמן הריצה כאשר גודל הקלט גדל ללא גבול. בדר"כ אלגוריתמים עם "סיבוכיות" ריצה טובה יותר יהיו יעילים יותר מלבד לקלטים קצרים
שאלה 2. תכנות ב - CShell
ביה"ס למדעי המחשב 4.2.2018 האקדמית נתניה מבחן מועד א' יסודות מערכות פתוחות סמסטר חורף, תשע"ח משך המבחן: שלוש וחצי שעות. יש לענות על כל השאלות. מותר השימוש בחומר עזר כלשהו, פרט למחשבים, (מחשבונים מותר).
<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>
1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $
Microsoft PowerPoint - rec3.ppt
תכנו ת מונח ה עצ מים משתני מחלקה, עצמים מוכלים ועצמים מוצבעים א וה ד ברז יל י א ונ יברס י ט ת תל אביב משתנ י מח ל קה Static Members משתני מחלקה members) (static משתנים סטטיים מוגדרי ם בתוך מח לקה ואולם
לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ
-28- לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' 107-105(.Ⅰ 5 656 הסבר נדב יצא מביתו )נקודה (, צעד 5 ק"מ לכיוון מזרח, והגיע למסעדה
תוכן הגדרת שאלת רב-ברירה ]אמריקאית[...2 הגדרת שאלת נכון\לא נכון...8 שאלות אמריקאיות 1
תוכן הגדרת שאלת רב-ברירה ]אמריקאית[...2 הגדרת שאלת נכון\לא נכון...8 1 הגדרת שאלת רב-ברירה ]אמריקאית[ הוספת השאלה 1. בבלוק הניהול הנמצא מימין נלחץ על מאגר שאלות.. 2. על מנת להוסיף שאלה חדשה נלחץ על לחצן
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי
אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', 6.2.2012 הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה מהכיתה במהלך