Microsoft Word - dvar hamaarehet_4.8.docx

גודל: px
התחל להופיע מהדף:

Download "Microsoft Word - dvar hamaarehet_4.8.docx"

תמליל

1 מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם בלוך בעיה סטנדרטית מספר הלימוד בגיאומטריית המישור, אשר דרך הפתרון שלה מוגבלת לידע מסוים. עובדה זו מקשה על הפתרון ומאלצת שימוש בקווי עזר. תוך כדי הוכחה מתקבלות תכונות נוספות ומעניינות לריבוע החסום, עד כדי יצירת סדרות אינסופיות של ריבועים חוסמים וחסומים לסירוגין. מילות מפתח: מרובע חסום, ריבוע, נקודת שבת, תהליך יצירת פתרון, סדרה אינסופית, ריבועים. החומר פורסם במסגרת: על"ה 39, תשס"ח 2008, עמוד 66. החומר מכיל בנוסף לעמוד הפתיחה: 5 עמודים. מרכז מורים ארצי במקצוע: מתמטיקה. הפרויקט מבוצע ע"י אוניברסיטת חיפה עפ"י מכרז מס' 6/1.07 הפרויקט מבוצע עבור האגף לתכנון ולפיתוח תכניות לימודים, המזכירות הפדגוגית, משרד החינוך מרכז ארצי למורים למתמטיקה בחינוך העל יסודי - הפקולטה לחינוך, אוניברסיטת חיפה, חיפה פקס טל' אתר: דוא"ל:

2 מרובע חסום ועקשן או נכדי מסר לטיפולי בעיה בגיאומטריה אברהם בלוך inômio de Newton é tão beloqanto a Vens de Milo. qe ha é poca gente para dar por isso. (ernando Pessoa) "רבה יופייה של נוסחת הבינום של ניוטון כמו יופייה של האלה ונוס ממילו. מה שקורה הוא שיש מעט אנשים שנותנים דעתם לכך." (פרננדו פסוא, פורטוגל) ואני מרשה לעצמי להוסיף, שאם כך נאמר לגבי הבינום של ניוטון, אז על אחת כמה וכמה יופיין הרב של בעיה גיאומטרית ודרך פתרונה. אשמח אם אנשים רבים יבחינו ביופי זה. "סבא, תעזור לי בבקשה. יש כאן בעיה בגיאומטריה שאני לא מצליח לפתור וגם לא הפותרים היותר מנוסים בבית." להלן הניסוח המקורי לבעיה אשר "נגדה" ביקש נכדי, את עזרתי. אפשר להסתמך רק על הגדרות, תכונות וטענות בנושאים, כגון: זוויות במשולש, חפיפת משולשים, ישרים מקבילים, ישרים מאונכים זה לזה, וכן על הגדרות ותכונות של המרובעים למיניהם. במאמר זה אציג, הגיאומטריים והדידקטיים, בארבעה פרקים, שחשבתי עליהם לאחר לפתור את הבעיה לשביעות רצונו של הנכד. פרק ראשון: הצגת הפתרון של הבעיה. פרק שני: המרובע ומעניינות. את עיקרי הרעיונות, שהצלחתי החסום, טומן בחובו תכונות נוספות פרק שלישי: שינויים מזעריים בניסוח הבעיה, מובילים לשינויים גדולים בפתרונה. פרק רביעי: בניית הריבוע החסום כאשר נתונים הריבוע החוסם והזווית (שונה מ-.( 45 פרק ראשון: 1 בסרטוט.1 מתואר ריבוע פתרון הבעיה ומרובע חסום בריבוע, כך שצלעותיו של המרובע יוצרות עם הצלעות המתאימות של הריבוע זווית חדה השונה מ-. 45 סרטוט 1 בעיה: בתוך ריבוע חסום מרובע יוצרות זווית, השונה מ-, 45 עם צלעות הריבוע. הוכח: המרובע הוא ריבוע. הערה: הסבר מדוע התנאי, שצלעותיו 45 ההוכחה עליך להגיע לשלב שאכן תנאי זה נחוץ. חייב להתקיים. במהלך לגבי הדרך לפתרון הבעיה, אמר לי הנכד שקיימת מגבלה: יש להשתמש אך ורק בחומר שנלמד עד אז בכיתתו, וזה לא כולל קטעים פרופורציונאליים, משפט תאלס ודמיון משולשים. כלומר, נוכיח בשלב זה שכל הזוויות הפנימיות של המרובע הן ישרות. לשם כך, נתבונן בנקודה ב- : ישנן שלוש זוויות שקדקודיהן : זווית, זווית, שהיא פנימית במרובע החסום, וזווית. 90 לכן מתקיים השוויון: (90 ) ומכאן אותו הטיעון מאפשר לקבוע שכל ארבע הזוויות הפנימיות במרובע החסום הן זוויות ישרות. מסקנה: המרובע החסום הוא מלבן. על"ה 39 אוגוסט

3 2. נתגבר על האכזבה שגורם לנו המרובע, שעד עכשיו "לא מסכים" להיות ריבוע, ונראה מה אפשר להסיק מזה שהוא "כבר הסכים" להיות מלבן. א) שכל שתי צלעות נגדיות בו הן מקבילות ושוות באורכן. ב) ששני אלכסוניו חוצים זה את זה, ושווים באורכם. אם נסמן ב- את מפגש האלכסונים (סרטוט 2), מתקיים: (1) סרטוט 2 3. כדי להתקדם לעבר פתרון הבעיה, נחקור את המיקום של נקודה ביחס לריבוע המקורי. לשם כך, נעביר דרך ישר וב- המאונך ל- (ולכן מאונך גם ל,( ונסמן ב- R את נקודות החיתוך של הישר P עם הצלעות בהתאמה (סרטוט 3). נציין גם שהישר בשני המשולשים שלהם ב- סרטוט 3 מקביל לצלעות ו- ו-. כעת, נתבונן : R ו- P הן קודקודיות, והצלעות הם ישרי-זווית, ו- לפי (1). קיבלנו ששני המשולשים P ו- ; P R נוסף לכך, מתקיים השוויון המרובע PR הוא מלבן). R הזוויות שוות באורכן חופפים ולכן משני השוויונות האחרונים נובע ש- (2) 1 R= P= 2 באותו אופן, אם נעביר דרך ישר v המאונך ל- (ולכן מאונך גם ל- ( ונסמן ב- הישר v עם ו- ו- ; Q מכאן נובע: וב- Q את נקודות החיתוך של בהתאמה, נקבל שני משולשים חופפים (3) 1 Q = = 2 4. כעת יש לנו "מספיק תחמושת" כדי להוכיח שגם המשולשים R ו- Q (סרטוט 4) הם חופפים: שניהם ישרי-זווית, הניצבים שלהם היתרים ו- "מרוויחים" כי: R ו- Q שווים באורכם (לפי (2) ו- (3)), גם שווים באורכם (לפי (1)). מחפיפה זו אנו סרטוט 4 (4) R Q 5. על סמך שוויון הזוויות (4), נוכל לחשב את גודלה של הזווית שבין האלכסונים של המרובע החסום מסקנה: באורכם : (5) R R Q R מהעובדה שאלכסוני המרובע RQ 90 גם שווים (לפי (1)), וגם מאונכים זה לזה (לפי (5)) נובע כי המרובע החסום הוא ריבוע. מ.ש.ל. פרק שני: תכונות נוספות ומעניינות לריבוע ה"צעיר" המרובע החסום טומן בחובו תכונות נוספות ומעניינות. 1. נחשב את גודל הזווית X, שכרגע "נכנס" למשפחת הריבועים, (סרטוט 5). הזווית היא אחת מהזוויות שבין האלכסון של הריבוע החסום, לבין האלכסון של הריבוע החוסם. שינויים מזערים בניסוח הבעיה, מובילים לשינויים גדולים בפיתרון הבעיה! P R Q PR (כי הרי P R Q v על "ה 39 אוגוסט

4 הז( במשולש כך ש- 45 : והזווית מפוצלת, 45 ו-. 90 x 45 (45 90 ומכאן: ) 180 מפתיע). סרטוט 5 לכן: x (כמה לא.2 נחזור לסרטוט,3 שם קבענו כי: Q P. P, Q האלכסונים של מכאן שהנקודה ( לכן, נמצאת ו- של המרובע החוסם; שייכת לחוצה הזווית של במרחקים שווים וכן (מפגש מהצלעות במילים אחרות, ; שייכת לאלכסון ; אותו הטיעון מראה ש- נמצאת על האלכסון. כלומר: נקודת המפגש של אלכסוני הריבוע החסום מתלכדת עם נקודת המפגש של אלכסוני הריבוע החוסם המסקנה הזו נותנת לנקודה המקורי. ( החדות, הנקודה מעמד של החסומים בריבוע. 3. כתוצאה מכניסת המרובע (מפגש האלכסונים של הריבוע נקודת שבת: עבור כל הזוויות היא נקודת המפגש של כל הריבועים למשפחת הריבועים, אפשר לקבוע שכל ארבעת המשולשים ישרי-הזווית (סרטוט,,(1 ו-,, חופפים זה לזה (היתרים שווים בהיותם צלעות של ריבוע, והזוויות ליד היתר הן ו- ). 90 מכאן נובע שבכל משולש כזה, סכום אורכי הניצבים שווה לאורך צלע הריבוע החוסם. "מריח" כמו משפט פיתגורס, אבל זה לא!) פרק שלישי: שינויים מזעריים הבעיה. שינויים בניסוח הבעיה, מובילים לשינויים גדולים בפיתרון 1. ניתן לשנות "טיפה" את נוסח הבעיה, ובמקום הנתון "זווית קבועה אפשר להגדיר שקדקודי המרובע החסום ", את צלעות הריבוע החוסם לקטעים, מחלקים כך שמתקיים. במקרה זה הכנסת המרובע החסום שבבעיה פוחתת. 2. כאשר הזווית תקפה. עבור והמשולשים גם במקרה שבו למשפחת הריבועים הייתה מיידית, אבל מידת היופי, 45 ההוכחה שהוצגה בפרק הראשון אינה 45 הנקודה, P מתלכדת עם הנקודה, Q, P (סרטוט (3 וכו' "נעלמים". אבל 45 המרובע החסום הוא ריבוע (סרטוט 6). סרטוט 6 ההוכחה נובעת מכך שהמשולשים R, RQ, QP ו- P חופפים. במשולש הישר-זווית, P שבו יתר ו-. P ניצב, מתקיים P מכאן אפשר לקבוע כי:, באופן המתואר בבעיה, הריבוע בהיקפו ובשטחו. כאשר הזווית בין כל הריבועים החסומים בריבוע PQR, 0 המרובע הוא מינימאלי חסום באופן קצת מאולץ, ולמעשה, במקרה זה הוא מתלכד עם הריבוע. אפשר, אם כך, לומר שבין כל הריבועים החסומים בריבוע באופן המתואר בבעיה, הריבוע עבור הזווית, הנוצר 0 הוא מקסימאלי בהיקפו ובשטחו..3 7 בסרטוט. מתוארים שני מרובעים חסומים בתוך הריבוע צלעותיו של המתאימות של הריבוע האחד יוצרות זווית 90 עם הצלעות, וצלעותיו של האחר יוצרות זווית עם הצלעות המתאימות של. במקרה זה הריבועים החסומים שמתקבלים חופפים (שוב, על סמך משולשים חופפים). P R Q v x על"ה 39 אוגוסט

5 מסתבר שאפשר למקם את כל ארבעת הקודקודים,,, סרטוט 7 מכאן שבניית הריבוע החסום עם זווית, 90 זהה לבניית הריבוע החסום כשהזווית היא הקדקודים הקודקודים,,,, ' ' ' ',,, מציינים תנועה אבל עם מסמנים תנועה במגמה נגדית מחוגי השעון, נגד (אם אזי כיוון מחוגי השעון). מכאן אפשר להסיק כי מספיק לחקור את השתנות הריבוע החסום כאשר פרק רביעי: בניית ריבוע חסום בניית הריבוע החסום כאשר נתונים הריבוע החוסם והזווית (שונה מ-.( 45 נתון הריבוע ונתונה זווית. כיצד למקם את הנקודה על הצלע, כך שהזוויות בין צלעות המרובע החסום, וצלעותיו המתאימות של הריבוע המקורי, יהיו כולן שוות ל-? ובמילים אחרות: בהינתן ריבוע וזווית, איך נבנה את המרובע החסום המתואר בבעיה המקורית? (וקביעת על ישנה חשיבות רבה לבחירת מיקום הנקודה מגמה "עם מחוגי השעון"). מיקום מאפשר מיקום חד-ערכי של (עקב שני האילוצים:, נקודה נמצאת על צלע, ובהמשך גם מיקום חד-ערכי של נקודות ), כך שאי-אפשר לדרוש מ-. I ו- I לקיים אילוץ שלישי, כלומר, לטעון מראש שהנקודה I מתלכדת עם הנקודה (סרטוט 8). סרטוט 8 על-ידי שימוש בטענה, האומרת שהזוויות בין אלכסוני הריבוע המקורי ואלכסוניו המתאימים של המרובע החסום שוות גם הן ל-. נתון הריבוע שאורך צלעו ונתונה זווית חדה, a, מפגש אלכסוני הריבוע (שונה מ- ). 45 נעביר דרך שני ישרים היוצרים עם ו- חותכים את צלעות בנקודות זוויות שוות ל-. ישרים אלה,,,, בסרטוט 9. סרטוט 9 כמתואר כלומר, הישר 90 מאונך לישר (1).,,, המשולשים בכולם ישנה זווית, בכולם ישנה זווית של, 45,,, שוות באורכן. מהחפיפה נובע ש: מ-( 1 ) ומ- (2) נובע כי המרובע חופפים, כי והצלעות.(2) הוא ריבוע, כי הרי אלכסוניו שווים באורכם, חוצים זה את זה ומאונכים זה לזה. נתבונן בזווית. x במשולש, 45 ( x 45 ) (90 ומכאן ) 180 דומה אפשר לטעון לגבי, ו-. לכן המבוקש. שיטה נוספת לפתור את בעיית המיקום של נקודה מתקיים:. x באופן הוא הריבוע, היא שיטה ש"הצילה" אותי בעבר בהתמודדות עם בעיות מתמטיות. הרבה פעמים קורה שדרושה פריצה מתוך תחום מסוים, כדי לגבש פתרון לבעיה. הפתרון נמצא בתחום המקורי של נתוני הבעיה, אך תהליך יצירת הפתרון הוא זה המחייב מעבר לתחום רחב יותר. קראתי לשיטה זו בשם xogenesis (מחוץ= exo, יצירה= genesis ). מכאן בחזרה לבניית המרובע לריבוע המקורי,. החלטתי לעבוד מחוץ והפכתי אותו מריבוע חוסם לריבוע הרבה פעמים קורה שדרושה פריצה מתוך תחום מסוים, כדי לגבש פתרון לבעיה. הפתרון נמצא בתחום המקורי של נתוני הבעיה, אך תהליך יצירת הפתרון הוא זה המחייב מעבר לתחום רחב יותר. x 45 ' ' I ' ' על "ה 39 אוגוסט

6 , ו- חסום. נעביר דרך הקדקודים את הישרים,, ' ' ' ' ' ' ' ',,, (סרטוט 10), היוצרים בהתאמה עם,,,, זוויות בגודל (באותה המגמה, למשל, עם תנועת מחוגי השעון). הפעם המרובע החוסם ' ' ' ' ' (חפיפת המשולשים, אלכסוני "מסכים" מיידית להיות ריבוע ' ' ' ' ' הריבוע הריבוע שוות ל-. כעת, נתבונן בארבעת המשולשים: גם וכו'). הזוויות בין לבין האלכסונים המתאימים של סרטוט 11 ולבסוף, תודתי נתונה לנכדי שהציג לי את הבעיה. כנראה שהוא כבר בין ה"מבחינים" ואני מאוד שמח על כך. ' ' הריבוע המקורי שלנו ביחד עם הזווית חולל שתי סדרות אינסופיות של ריבועים, שהם חוסמים וחסומים לסירוגין. אברהם בלוך ' מורה, פנסיונר, לימד בבית ספר "בסמת", בקיבוצים יגור, גשר הזיו ומעגן מיכאל, ובמכללת אורנים. ' סרטוט 10 היא.,,, בכולם הזווית ב-,, והצלעות 45 הן של ו-,,, הזוויות ב-,, ו-.( מכאן ש- שוות נוכל לטעון שהמרובע (חצאי האלכסונים של הריבוע, ויחד עם הוא ריבוע, אלכסוניו שווים באורכם, חוצים זה את זה, ומאונכים זה לזה. לסיכום, הריבוע וזווית כי מחוללים שתי סדרות אינסופיות של הריבועים, שהם חוסמים וחסומים לסירוגין (סרטוט בחינוך למורים ללמתמטיקה כנס ארצי יסודי העל.(11 28 בדצמבר 2008 לפרטים: על"ה 39 אוגוסט

HaredimZ2.indb

HaredimZ2.indb יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

קרא עוד

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים

קרא עוד

Microsoft Word - 38

Microsoft Word - 38 08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.

קרא עוד

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

ע 003 מרץ 10 מועד מיוחד פתרונות עפר בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר

קרא עוד

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה יש לפתור את כל השאלות עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו

קרא עוד

rizufim answers

rizufim answers ÌÈÙÂˆÈ מדריך למורה פעילות זו היא פעילות חקר לבדיקת כל אפשרויות הריצוף שבהן סידור מצולעים סביב קודקוד הוא זהה. המצולעים שבהם ישתמשו התלמידים הם: משולש שווה צלעות, משושה משוכלל וריבוע - כולם בעלי צלע באותו

קרא עוד

Microsoft Word - solutions.doc

Microsoft Word - solutions.doc תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה

קרא עוד

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה - פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים

קרא עוד

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63> 1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $

קרא עוד

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יחל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא

קרא עוד

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C 8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות

קרא עוד

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 סמ, כמו כן אחת מצלעות המקבילית שווה ל- 8 סמ. מהו גודלה של שאר צלעות המקבילית בסמ?.1 8 נתונה תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה מקבילית שצלעותיה שוות ל- 3 ס"מ ול- 7 ס"מ. מהו הטווח

קרא עוד

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשעט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי  שכונה מערבית, רח' הפסגה 17 כרמיאל דואל: עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30

קרא עוד

עב 001 ינואר 12 מועד חורף פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית

קרא עוד

סז 002 נואר 07 מועד חורף פתרונות עפר

סז 002 נואר 07 מועד חורף פתרונות עפר הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות

קרא עוד

Limit

Limit פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:

קרא עוד

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, ,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא

קרא עוד

Microsoft Word - 28

Microsoft Word - 28 8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת

קרא עוד

mivhanim 002 horef 2012

mivhanim 002 horef 2012 מבחן מספר 1 (שאלון 00 חורף תשע"ב) בשאלון זה שש שאלות. תשובה מלאה לשאלה מזכה ב- 5 נקודות. מותר לך לענות, באופן מלא או חלקי, על מספר שאלות כרצונך, אך סך הנקודות שתוכל לצבור לא יעלה על. 100 אלגברה (x+ 5)

קרא עוד

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,

קרא עוד

Microsoft Word - hedva 806-pitronot-2011.doc

Microsoft Word - hedva 806-pitronot-2011.doc ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על

קרא עוד

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63> הסברים לפרק כמותי : :úåðåëðä úåáåùúä 0 9 8 7 6 5 5 0 9 8 7 6 5. התשובה הנכונה היא: (). עלינו לקבוע איזה מהביטויים שבתשובות אינו זוגי. משום שהשאלה עוסקת בתכונת הזוגיות, ננסה ללמוד מהנתון על זוגיותם של x

קרא עוד

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0 22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

א"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)

אודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t) א"ודח ב גרבימ הרש רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא בחרמב ינש גוסמ יוק לרגטניא יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע ttt t r רשאכ ttt :עטקב תופיצר תורזגנ תולעב [ab]. יהי F תופיצר תורזגנ

קרא עוד

בחינה מספר 1

בחינה מספר 1 תוכן העניינים בחינה מספר 1 4 אלגברה: 4 חשבון דיפרנציאלי ואינטגרלי: בחינה מספר 6 אלגברה: 6 חשבון דיפרנציאלי ואינטגרלי: 7 בחינה מספר 3 8 אלגברה: 8 חשבון דיפרנציאלי ואינטגרלי: 9 בחינה מספר 41 אלגברה: 01 חשבון

קרא עוד

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו

קרא עוד

אי שוויונים ממעלה ראשונה לארבע יחידות

אי שוויונים ממעלה ראשונה לארבע יחידות אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.

קרא עוד

ע 001 ינואר 10 מועד חורף פתרונות עפר

ע 001 ינואר 10 מועד חורף פתרונות עפר בגרות ע 00 ינואר 0 שאלון 50 הציר האופקי, ציר ה-, x מתאר את הזמן שעובר, בשניות, מתחילת השחייה כל משבצת היא בת 0 שניות הציר האנכי, ציר ה - y, מתאר את המרחק מקצה הבר כה כל משבצת היא בת 0 מטר כאשר הקו עולה

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

<4D F736F F D20EEE4F4EA20EEE0E420F9ECE5F9E9ED20E5F9E1F22E646F63>

<4D F736F F D20EEE4F4EA20EEE0E420F9ECE5F9E9ED20E5F9E1F22E646F63> 1 ----- ואלה עיקריו של המהפך במתמטיקה - 1 הוא המספר האי רציונלי היחידי, וכל שאר המספרים הם רציונליים. בפיסיקה - מסלולי התנועה הטבעיים של כוכבים, הם מסלולים בורגיים. בגיאומטריה - פאי משתנה ואינו קבוע. המהפך

קרא עוד

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות

קרא עוד

מתמטיקה לכיתה ט פונקציה ריבועית

מתמטיקה לכיתה ט פונקציה ריבועית מתמטיקה לכיתה ט פונקציה ריבועית צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת

קרא עוד

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,

קרא עוד

סדרה חשבונית והנדסית

סדרה חשבונית והנדסית .2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.

קרא עוד

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

פונקציה מסדר ראשון;  הגדרת קו ישר: - הצגה עי ביטוי אלגברי וגרפי המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה

קרא עוד

îáçï îúëåðú îñ' 1

îáçï îúëåðú îñ'  1 5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä

קרא עוד

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם

קרא עוד

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור

קרא עוד

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את

קרא עוד

Microsoft Word - 14

Microsoft Word - 14 9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את

קרא עוד

תשובות 1. משתנה וביטוי אלגברי 1 א פרצוף שמח, פרצוף עצוב וכו'... ב פרצוף שמח. ג - 8 עצוב, - 15 שמח. ד שמח, עצוב. עמ' 2 2 א תכלת. ב 5. ג אי-

תשובות 1. משתנה וביטוי אלגברי 1 א פרצוף שמח, פרצוף עצוב וכו'... ב פרצוף שמח. ג - 8 עצוב, - 15 שמח. ד שמח, עצוב. עמ' 2 2 א תכלת. ב 5. ג אי- 1. משתנה וביטוי אלגברי 1 א פרצוף שמח, פרצוף עצוב וכו'... ב פרצוף שמח. ג - 8 עצוב, - 15 שמח. ד - 567 שמח, - 784 עצוב. עמ' 2 2 א תכלת. ב 5. ג אי-זוגיים. ד זוגיים. ה 10, כתום. א 9. 4, 1, ב מספר המבנה בריבוע.

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) 5 עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי 5

קרא עוד

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשעח m 2 הוראות לנבחן: )1( הבחינה מו מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות

קרא עוד

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

קרא עוד

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה - יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. התייחסות רצינית להכנת העבודה היא תנאי

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

Algorithms Tirgul 1

Algorithms Tirgul 1 - מעגלי אוילר ומסלולי אוילר תרגול 1 חידה: האם אפשר לצייר את הציורים הבאים בלי להרים את העיפרון מהנייר? 1 קצת אדמיניסטרציה אופיר פרידלר ophir.friedler@gmail.com אילן כהן - ilanrcohen@gmail.com שעות קבלה

קרא עוד

מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

מטלת מנחה (ממן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה

קרא עוד

08-78-(2004)

08-78-(2004) שאלון 00 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן

קרא עוד

מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4

מבחן חוזר במכניקה 55 א יא יחללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4 מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי יחידות

קרא עוד

YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדו

YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדו YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדול. השמיכה מקבלת צורה! מקרא עין שרשרת עין שטוחה חצי

קרא עוד

" תלמידים מלמדים תלמידים."

 תלמידים מלמדים תלמידים. " תלמידים מלמדים תלמידים." פרוייקט של צוות מתמטיקה, בית ספר כפר-הירוק איך הכל התחיל... הנהלת בית הספר העל-יסודי הכפר הירוק יזמה פרויקט בית ספרי: "למידה ללא מבחנים- הוראה משמעותית", צוות המתמטיקה החליט

קרא עוד

חלק א' – הקדמה

חלק א' – הקדמה ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי

קרא עוד

. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים

. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים שאלה : ה אי x] : R4[ x] R4[ אופרטור ליניארי מוגדר על-ידי ( ax bx cx d) bx ax cx c )3 נק'( א( מצאו את הערכים העצמיים המרחבים העצמיים והפולינום המורכב מוקטורים עצמיים של R [ [x האופייני של מצאו בסיס של 4

קרא עוד

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים כיתה

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים   כיתה שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים www.kefwithjeff.org כיתה Happy New Year 8 0 80 80 0 8 8 8 8 8 08 8 0 0 בכל שורה ובכל טור יש את המספרים עד כולל.

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,65 באר-שבעISRAEL 058P.O.B. 65, BEER SHEVA 8 05, המזכירות האקדמית המרכז ללימודים קדם אקדמיים אלגברה - נוסחאות הכפל מקוצר גיליון תרגילים מס'

קרא עוד

<4D F736F F D20EBE9FAE420E7202D20E0E7E5E6E9ED202D20E3F4E920F1E9EBE5ED20ECFAECEEE9E3E9ED D20F8EEE420E0202D20E8E5F4F120382D332

<4D F736F F D20EBE9FAE420E7202D20E0E7E5E6E9ED202D20E3F4E920F1E9EBE5ED20ECFAECEEE9E3E9ED D20F8EEE420E0202D20E8E5F4F120382D332 דף עבודה אחוזים באילו מהאיורים הבאים החלק הצבוע מהווה אותו אחוז מהם? מהו גודלו החלק ואיזה אחוז הוא מהווה מהם? (1) (ה) התבוappleappleו באיור משמאל. רשמו איזה חלק מהווה החלק הצבוע בשבר פשוט ובכתיב אחוזים.

קרא עוד

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו אב תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,

קרא עוד

Microsoft Word - shedva_2011

Microsoft Word - shedva_2011 שיטות דיפרנציאליות ואינטגרליות הפקולטה להנדסה אוניברסיטת תל אביב גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה

קרא עוד

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63>

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63> מתמטיקה א' לכלכלנים גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים

קרא עוד

אנליזה מתקדמת

אנליזה מתקדמת א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:

קרא עוד

חשבון אינפיניטסימלי מתקדם 1

חשבון אינפיניטסימלי מתקדם 1 חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי

קרא עוד

המכללה האקדמית לחינוך ע"ש דיו ילין

המכללה האקדמית לחינוך עש דיו ילין ירושלים, אייר, תשע"ה למנהלי בתי הספר ולרכזי ומורי המתמטיקה שלום רב אנו מבקשים לעניין אתכם בתכנית " הכשרת מורים להוראת תלמידים ברוכי כישרון במתמטיקה ובמדע ומסגרת לטיפוח תלמידים ברוכי כישרון במתמטיקה ובמדע"

קרא עוד

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ -28- לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' 107-105(.Ⅰ 5 656 הסבר נדב יצא מביתו )נקודה (, צעד 5 ק"מ לכיוון מזרח, והגיע למסעדה

קרא עוד

מצגת של PowerPoint

מצגת של PowerPoint שלום לתלמידי י"א חמש יחידות מתמטיקה גיל קרסיק מורה למתמטיקה בשעה וחצי הקרובות נדבר על שאלון 806 סדרות הנדסיות וחשבוניות ארבעה תרגילים שהיו בבחינות בגרות ארבעה טיפים )טיפ אחד אחרי כל תרגיל שנפתור הערב(

קרא עוד

Untitled

Untitled 2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim

קרא עוד

أكاديمية القاسمي كلية أكاديمية للتربية אקדמיית אלקאסמי מכללה אקדמית לחינוך שאלון מוטיבציה פנימית סטופ-הראל, 2002

أكاديمية القاسمي كلية أكاديمية للتربية אקדמיית אלקאסמי מכללה אקדמית לחינוך שאלון מוטיבציה פנימית סטופ-הראל, 2002 שאלון מוטיבציה פנימית סטופ-הראל, 00 מדוע יורדת המוטיבציה הפנימית ללמידה? הבדלים בין בתי ספר יסודיים וחטיבות ביניים במוטיבציה פנימית ובמשתנים המקושרים אליה מאת : אורית סטופ-הראל בהדרכת : ד"ר ג'ני קורמן

קרא עוד

Microsoft Word - ale35-6.doc

Microsoft Word - ale35-6.doc "קשר חם" המרכז הארצי לקידום, שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגיה לישראל המחלקה להוראת הטכנולוגיה והמדעים מוסד הטכניון למחקר ופיתוח מל"מ המרכז הישראלי להוראת המדעים ע"ש עמוס דה שליט הנושא:

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

Microsoft Word ACDC à'.doc

Microsoft Word ACDC à'.doc דו"ח מסכם בניסוי: AC/DC חלק: א' סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): סרגיי ציון הדו"ח: II תאריך ביצוע הניסוי: 14/05/001 תאריך הגשת הדו"ח: 1/05/001 הדו"ח מוגש על ידי: II I

קרא עוד

Microsoft Word פרק 16 - פתרון משוואות רמה א

Microsoft Word פרק 16 - פתרון משוואות רמה א 0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.

קרא עוד

áñéñ åîéîã (ñéåí)

áñéñ åîéîã (ñéåí) מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא

קרא עוד

פשוט חשבון כיתה ו - ספר שני שם תלמיד: שם מורה: דואר אלקטרוני תלמיד: דואר אלקטרוני מורה: תאריך הגשה: ציון: דפי עבודה מקוונים - כיתה ו', ספר שני, יחידה

פשוט חשבון כיתה ו - ספר שני שם תלמיד: שם מורה: דואר אלקטרוני תלמיד: דואר אלקטרוני מורה: תאריך הגשה: ציון: דפי עבודה מקוונים - כיתה ו', ספר שני, יחידה פשוט חשבון כיתה ו - ספר שני שם תלמיד: שם מורה: דואר אלקטרוני תלמיד: דואר אלקטרוני מורה: תאריך הגשה: ציון: דפי עבודה מקוונים - כיתה ו', ספר שני, יחידה 2. פתרו את השאלות, לחוד או בזוגות. תעדו את דרך הפתרון.

קרא עוד

מתמטיקה של מערכות

מתמטיקה של מערכות מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות

קרא עוד

Microsoft Word - teachmodel1.doc

Microsoft Word - teachmodel1.doc דגמי הוראה תכנון שיעור נושא השיעור: אסטרטגיות לחישוב נפח תיבה כיתה: ד נושא בתכנית הלימודים: נפח תיבה (עמוד 92) מיומנויות מתכנית הלימודים: פיתוח ראייה מרחבית - קשרים בין מודל דו-ממדי למודל תלת-ממדי והתנסות

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) - עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לכל תלמידי

קרא עוד

Microsoft Word - ex04ans.docx

Microsoft Word - ex04ans.docx 1 אריאל סטולרמן סטטיסטיקה / תרגיל #4 קבוצה 03 Φ2. ההתפלגות הנורמלית (1) Φ2.2. Φ2.22. Φ1.5 1Φ1.5. Φ0. Φ5 1Φ5 1Φ4.417. Φ 1Φ 1Φ4.417. נתון: ~ 0,1 ( a )להלן חישוב ההסתברויות: 2.22 1.55 Φ1.55 Φ2.22 Φ1.55 1Φ2.22

קרא עוד

תרגול 1

תרגול 1 תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת

קרא עוד

אבי סיגלר, רות סגל ומשה סטופל תכונות גאומטריות מפתיעות המתקבלות לאחר הפיכתו של מרובע כלשהו לסריג תקציר המאמר מציג חקר תכונות מעניינות שקיימות במרובע ק

אבי סיגלר, רות סגל ומשה סטופל תכונות גאומטריות מפתיעות המתקבלות לאחר הפיכתו של מרובע כלשהו לסריג תקציר המאמר מציג חקר תכונות מעניינות שקיימות במרובע ק תכונות גאומטריות מפתיעות המתקבלות לאחר הפיכתו של מרובע כלשהו לסריג תקציר המאמר מציג חקר תכונות מעניינות שקיימות במרובע קמור כלשהו עם התפתחותו לסריג בעל שורות ועמודות המורכבות מתת-מרובעים. התכונות המיוחדות

קרא עוד

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל

קרא עוד

כיף עם ג'ף חלק ב' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים. עריכה: ג'ף סייח

כיף עם ג'ף חלק ב' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים. עריכה: ג'ף סייח כיף עם ג'ף חלק ב' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים. עריכה: ג'ף סייח www.kefwithjeff.org + = + = 0 + 0 = 0 + = 0 = 0 = 00 = 00 = 0 0 = 0 x = 0 x = 0 x 0 = x = x = : = 0 : = : = 00

קרא עוד

1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם

1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם 1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר: 1.מחשבון. נספח הנוסחאות

קרא עוד

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשעז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', 31.1.2017 מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבוני, דולב שרון הנחיות: 1. משך הבחינה: 120 דקות. 2. היציאה

קרא עוד

Microsoft Word - Guberman doc

Microsoft Word - Guberman doc אפשר גם אחרת חילוק שברים פשוטים עמוד חילוק שברים פשוטים מתמטיקה תרגולית או מתמטיקה אחרת? ראיסה גוברמן אחד המסרים המרכזיים שעל המורה למתמטיקה להעביר לתלמידיו הוא, שהמתמטיקה אינה אוסף עובדות וכללי פעולה

קרא עוד

Microsoft Word - Questions Booklet Spring 2009

Microsoft Word - Questions Booklet Spring 2009 אלגוריתמים 1 חוברת תרגילים נא לשלוח כל הערה לגיל כהן במייל cohen@cs.technion.ac.il מפתח שאלות לפי נושאים 1, 45, 54, 55, 56, 76 5, 63 :BFS :DFS מיון טופולוגי: 17, 31, 32, 57, 67, 68 2, 25, 26, 28, 50 21,

קרא עוד

עיצוב אוניברסלי

עיצוב אוניברסלי איך לסמן חניות נכים תוכן עניינים החוק כמויות חניות לסימון סימון ותמרור חניות נכים רישום חניות נכים ברשות תמונות שרטוטים חוק חניה לנכים חוק חניה לנכים, התשנ"ד 1993 החוק מגדיר: מי זכאי לתו חניית נכים היכן

קרא עוד

Microsoft Word - beayot tnua 3 pitronot.doc

Microsoft Word - beayot tnua 3 pitronot.doc ק( בעיות מילוליות - בעיות תנועה.7 פתרון: א. נסמן : קמ"ש קמ"ש מהירותו של הולך הרגל. מהירותו של רוכב האופניים. משך זמן הליכתו של הולך הרגל מקיבוץ א' לקיבוץ ב'. משך זמן רכיבתו של רוכב האופניים מקיבוץ א' לקיבוץ

קרא עוד

תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה

תאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב

קרא עוד