סיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב

מסמכים קשורים
מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

משוואות דיפרנציאליות מסדר ראשון

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

אנליזה מתקדמת

תאריך הבחינה 30

Microsoft Word - hedva 806-pitronot-2011.doc

מתמטיקה של מערכות

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

חשבון אינפיניטסימלי מתקדם 1

מבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ

Untitled

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

Microsoft Word - 01 difernziali razionalit

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

תרגול 1

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

Limit

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב

פתרונות לדף מס' 5

Microsoft Word - Sol_Moedb10-1-2,4

עב 001 ינואר 12 מועד חורף פתרונות עפר

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

Microsoft Word - 38

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

Microsoft Word - ExamA_Final_Solution.docx

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

Microsoft Word - solutions.doc

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

áñéñ åîéîã (ñéåí)

Microsoft Word - shedva_2011

MathType Commands 6 for Word

67865 כלים מתמטיים 7 בינואר 2014 מרצה: מיכאל בן אור מתרגל: צור לוריא איני לוקחת אחריות על מה שכתוב כאן, so tread lightly אין המרצה קשור לסיכום זה בשום

Microsoft Word - 28

א"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה

שיעור 1

Algorithms Tirgul 1

08-78-(2004)

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63>

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

Microsoft Word ACDC à'.doc

אי שוויונים ממעלה ראשונה לארבע יחידות

משוואות דפרנציאליות רגילות /ח

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

PowerPoint Presentation

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

המחלקה למתמטיקה Department of Mathematics פרויקט מסכם לתואר בוגר במדעים )B.Sc( במתמטיקה שימושית שברים משולבים וקירובי פדה ריאן סלאח אלדין Continued fr

מבוא ללוגיקה ולתורת הקבוצות

Microsoft Word - 14

ðñôç 005 î

Microsoft Word - madar1.docx

תרגיל 5-1

Microsoft Word - ex04ans.docx

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב

שעור 6

חלק א' – הקדמה

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי

Microsoft Word - sol9

אלגברה ליניארית תאוריה ותרגילים פרופ' שלמה הבלין, אוניברסיטת בר אילן ד"ר יפית מעין, מרכז אקדמי לב

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו

שיטות הסתברותיות ואלגוריתמים חוברת התרגילים 25 באוקטובר 2015 חוברת זו מכילה תרגילים נבחרים מהיסטוריית הקורס ופתרונם. בשעות האימון יוצג מבחר מהתרגילים

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

îáçï îúëåðú îñ' 1

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

תכנות דינמי פרק 6, סעיפים 1-6, ב- Kleinberg/Tardos סכום חלקי מרחק עריכה הרעיון: במקום להרחיב פתרון חלקי יחיד בכל צעד, נרחיב כמה פתרונות אפשריים וניקח

מצגת של PowerPoint

1 חשבון דיפרנציאלי ואינטגרלי II גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

מבוא לתכנות ב- JAVA תרגול 7

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

PowerPoint Presentation

Microsoft Word - vaidya.doc

פיסיקה 1 ב' מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א'

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר

<4D F736F F D20F4E9E6E9F7E420FAF8E2E5ED20ECF2E1F8E9FA20E4E2E4E420F1E5F4E9FA20496C616E2E646F63>

סז 002 נואר 07 מועד חורף פתרונות עפר

מדינת ישראל משרד החינוך נוסחאות ונתונים בפיזיקה נספח לכל בחינות הבגרות ברמה של 5 יח"ל תוכן העניינים נוסחאות עמוד מכניקה 2 אלקטרומגנטיות 3 קרינה וחומר

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

מקביליות

שבוע 4 סינטקס של HACK ASSEMBLY ניתן להשתמש בשלושה אוגרים בלבד:,A,D,M כולם בעלי 16 ביטים. M אינו אוגר ישיר- הוא מסמן את האוגר של ה RAM שאנחנו מצביעים ע

מתמטיקה לכיתה ט פונקציה ריבועית

תמליל:

סיכום אינפי 2 28 ביולי 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך..אינני לוקחת אחריות על מה שכתוב מטה. השימוש באחריות הקורא בלבד. תוקן בעזרת אנשים יקרים סיגל מ', דור ש', בני פ', ערימת תלפיונים, ועוד.. הערות יתקבלו בברכה nog.rotmn@gmil.com

תוכן עניינים 5 קירובים פולינומיאלים........................................ 5.................................... מוטיבציה.0. 5...................................... קירוב מסדר n. 7 פולינום טיילור........................................2 6 פולינום האינטרפולציה של לגראנג'.............................3 2.................................... שיטת ניוטון רפסון.4 23.............................................. האינטגרל 2 23 שימושים באנליזה בעיית השטח........................ 2.0. 23 האינטגרל לפי דרבו.................................... 2. 23................................... סכומי דרבו 2.. 24........................... אינטגרביליות וסכומי דרבו 2..2 26........................... תנאי דרבו לאינטגרביליות 2..3 28...................... משפחות של פונקציות אינטגרביליות 2..4 29....................... תכונות הפונקציות האינטגרביליות 2..5 36.................................... האינטגרל לפי רימן 2.2 36................................... סכומי רימן 2.2. 36............................... אינטגרביליות רימן 2.2.2 37 קריטריון קושי.................................. 2.2.3 38................................ המשפט היסודי של האינפי 2.3 38 המשפט היסודי גרסא רשמית......................... 2.3. 39.................... המשפט היסודי גרסא שימושית למת"פ 2.3.2 39................... המשפט היסודי גרסא שימושית לאינפי 2 2.3.3 40................................... המשך דיון 2.3.4 4........................ האינטגרל הלא מסויים ושיטות אינטגרציה 2.4 4.............................. אינטגרציה לפי הצבה 2.4. 43............................. אינטגרציה לפי חלקים 2.4.2 44............................. האינטגרל הלא מסויים 2.4.3 45 עוד קצת עם פולינום טיילור בהקשר הזה.................... 2.4.4 45............................... עוד כמה נקודות... 2.4.5 46..................................... פונקציית מדרגות 2.5 48.................................... פונקציות רציונליות 2.6 48................................. נוסחאת וואליס 2.6. 49 האינטגרל הלא אמיתי................................... 2.7 49 אינטגרל על קטעים לא חסומים......................... 2.7. 50......................... תכונות האינטגרל הלא אמיתי 2.7.2 50 קריטריון קושי.................................. 2.7.3 2

5................................. מבחן ההשוואה 2.7.4 53............................ התכנסות בהחלט ובתנאי 2.7.5 54...................... אינטגרל של פונקציה שאינה חסומה 2.7.6 55 חומר העשרה הגדרה אנליטית של הפונקציות הטריגונומטריות............. 2.8 56................................................ טורים 3 56..................................... הגדרות בסיסיות 3. 57 תכונות של טורים מתכנסים........................... 3.. 58................................. זנבות ושאריות 3..2 59 קריטריון קושי.................................. 3..3 59 התכנסות בהחלט והתכנסות בתנאי....................... 3..4 59 טורים חיוביים....................................... 3.2 59............................... קריטריון ההשוואה 3.2. 60........................... קריטריון ההשוואה הגבולי 3.2.2 6................................. קריטריון המנה 3.2.3 62................................ קריטריון השורש 3.2.4 62 קריטריון ההשוואה לאינטגרל.......................... 3.2.5 63 קריטריון העיבוי................................. 3.2.6 64 הגדרת e לפי טורים............................... 3.2.7 65............................... טורים עם סימנים מתחלפים 3.3 65................................ קריטריון לייבניץ 3.3. 67 קריטריון דיריכלה................................ 3.3.2 68 קריטריון אבל.................................. 3.3.3 68........................ חלקים חיובים ושליליים של טור 3.3.4 69 טורים בשינוי סדר והכנסת סוגריים....................... 3.3.5 7 מכפלת טורים קונבולוציה................................ 3.4 73....................................... סדרות וטורי פונקציות 4 73 סדרות של פונקציות.................................... 4. 75........................ קריטריון קושי להתכנסות במ"ש 4.. 75............................ התכנסות במ"ש ורציפות 4..2 76 התכנסות במ"ש ואינטגרציה........................... 4..3 77 התכנסות במ"ש וגזירות............................. 4..4 78 משפט ויירשטראס................................ 4..5 79 טורי פונקציות....................................... 4.2 79...................... קריטריון קושי עבור התכנסות במ"ש 4.2. 79................. קריטריון M של ויירשטראס להתכנסות במ"ש 4.2.2 8........................................ טורי חזקות 4.3 82.............................. על רדיוס ההתכנסות 4.3. 82 נוסחת קושי הדמר לחישוב רדיוס ההתכנסות.................. 4.3.2 3

84................................... משפט אבל 4.3.3 88............................................... מסילות 5 88.......................................... הגדרות 5. 89............................... הנגזרת של מסילה 5.. 90................................ המסילה המשיקה 5..2 90 אורך של מסילה...................................... 5.2 93 מסילות שקולות...................................... 5.3 94......................... פרמטריזציה באמצעות האורך 5.3. 94.................................... עקמומיות 5.3.2 96..................................... אפיון לבאג לאינטגרביליות 6 98.............................. הלמה של היינה בורל 6.0.3 99 תנאי חדש לאינטגרביליות............................ 6.0.4 4

קירובים פולינומיאלים.0. מוטיבציה 2.02.200 נרצה לחשב, לדוגמא, מהו e. π כיצד נעשה זאת? נמצא קירוב! זאת ע"י פולינום המקורב לפונקציה המבוקשת, שאותו קל לפתור. זו גם השיטה בה משתמש המחשבון.. קירוב מסדר n תהי f פונקציה כלשהיא הגזירה n פעמים בנקודה. למדנו באינפי כי המשוואה לקירוב מסדר ראשון, הקירוב הלינארי, הינה: בצורה דומה, הקירוב הריבועי יהיה: וכן הלאה... l (x) = f () + f () (x ) q (x) = f () + f () (x ) + f (x ) 2 2 הנקודה הנתונה ע"י הפונקציה קשה לאיתור אולם כאמור הקירובים הם פונקציות פולינומיאליות, ולכן בעזרתם קל יותר למצוא את הערך. נשאל: מהו הפולינום הקרוב יותר לערך הפונקציה? מהו סדר הגודל של הטעות? נביט בכל הקווים הישרים העוברים ((),): f כל המשוואות שלהם הן מהצורה: כאשר n הוא שיפוע כלשהוא. y = f () + n (x ) כמובן שבגרף המשיק, n הינו השיפוע של הגרף המקורי בנקודה. כעת: lim [f (x) f () n (x )] = 0 x lim x f (x) f () x = f () lim x [f (x) f () n (x )] = 0 5

הגדרה. פונקציה f המוגדרת בסביבה של הינה גזירה (=דיפרנציאבילית) שם, lim x [ ] f (x) f () n (x ) = 0 x f (x) q () lim x (x ) 2 = 0 f (x) p (x) lim x (x ) n = 0 אמ"מ קיים n R בעל התכונה: במקרה זה, המשוואה של הקירוב הריבועי תקיים: וכך הלאה. באופן דומה, נרצה פולינום מסדר n המקיים: p (x) = π + ex 2x 2 + ln5 x 3 p (x) = e + 2 2x + ln5 3x 2 p (x) = 2 2 + ln5 3 2x p (x) = ln5 3 2 p (0) = π, p (0) = e, p (x) = 2 2, p (0) = ln5 3 2 p (x) = p (0) 0! + p (0) x! + p (0) x 2 2! + p (0) x 3 3! לדוגמא: p (x) = n i=0 p (x) = p (i) (0) i! x i, n = deg (p) n p (i) () (x ) i i=0 i! תרגיל: הוכיחו באינדוקציה: תרגיל נוסף: הוכיחו, שוב באינדוקציה: 6

T n (x) = f () 0! + f () (x )!.2 פולינום טיילור הגדרה.2 תהי f פונקציה בעלת נגזרות מסדר N {0} n בנקודה. +... + f (i) () (x ) i i! +... + f (n) () (x ) n n! הפולינום: נקרא פולינום טיילור מסדר n של הפונקציה f ב. נסמנו גם ב T. n f הערה.3 עבור n f (i), i = 0,..., מוגדרת בסביבה של. הערה.4 פולינום טיילור מסדר n איננו בהכרח מסדר n, אלא: degt n (x) n הערה.5 פולינום טיילור הוא הפולינום היחידי עם דרגה n המקיים: T n (j) f () = f (j) (), j = 0,..., n T n (j) f = T n j f (j), j = 0,..., n הערה.6 דוגמאות:. = 0, f (x) = exp (x) = e x f (i) (x) = f (x) = e x f (i) (0) = e 0 = T n (x) = + x + x2 2! +... + xn n! = + x + x2 2! +... + xn n!.2 = 0, f (x) = cos (x) f () (x) = sin (x), f (2) (x) = cos (x), f (3) (x) = sin (x), f (4) (x) = sin (x) T 0 (x) =, T (x) = + 0 x! g (x) = sin (x) =, T 2 (x) = x2 2!, T 3 (x) = x2 2! T 0 g (x) = 0, T g (x) = x, T 2 g (x) = x, T 3 g (x) = x x3 3! 7

f (x) T n (x) lim x (x ) n = 0 משפט.7 תהי f מוגדרת בקטע I, בעלת נגזרות מסדר N {0} n ב.I אזי, מתקיים: הוכחה: באינדוקציה על n: בקלות עבור = 0 n (במקרה זה הפונקציה f רציפה בנקודה). עבור = n: במקרה זה, לפי ההנחה, f גזירה ב, כלומר: lim f (x) f () x = f () lim f (x) f () f () (x ) x lim f (x) T n f (x) (x ) n = n lim = lim f (x) T f (x) x = 0 לכן מתקיים: הנחת האינדוקציה: נניח נכונות עבור n. צעד האינדוקציה: נראה נכונות הטענה עבור n. תחילה 2 n, לכן, לפי ההנחה, f גזירה בסביבה של. f (x) T nf (x) (x ) n לפי כלל לופיטל: לפי הערה.6: n lim f (x) T nf (x) (x ) n = n lim f (x) T n f (x) (x ) n ולכן, לפי הנחת האינדוקציה עבור f: lim f (x) T n f (x) (x ) n = 0 לכן, מנכונות עיקרון האינדוקציה, הטענה נכונה. משפט.8 תהי f מוגדרת בקטע I, בעלת נגזרות מסדר {0} N n ב I. יהי (x) p פולינום עם degp (x) n אשר מקיים: lim f (x) p (x) (x ) n = 0 אזי (x).p (x) = T n f הוכחה: יהיו (x) p (x), q פולינומים בעלי דרגה n, אשר מקיימים: f (x) p (x) f (x) q (x) f (x) q (x) f (x) + p (x) p (x) q (x) 0 = lim (x ) n = lim (x ) n 0 = lim (x ) n = lim (x ) n נגדיר (x) R (x) := p (x) q פולינום עם דרגה.n 8

נותר להראות שפולינום כזה המקיים: lim R (x) (x ) n = 0 0 = lim [ הינו פולינום האפס, ונסיים. נראה זאת באינדוקציה על n: בסיס האינדוקציה = 0 n.r (x) = b 0 R במקרה זה: 0 = lim R (x) (x ) 0 = lim R (x) = R () = b 0 ] (x ) n+ R (x) (x ) n+ וזאת בשל רציפות הפולינום. נניח כי המשפט נכון עבור 0 n ונראה נכונות עבור + n: יהי n+.r (x) = b 0 + b (x ) +... + b n+ (x ) = lim R (x) = R () = b 0 אזי, לפי אריתמטיקה של גבולות: lim n+.r (x) = (x ) מכאן: מכיוון ו 0 = 0 b נוכל לרשום i= b (x )i n+ R (x) (x ) n+ = lim i= b i (x ) i (x ) n,n הינו פולינום מדרגה n+ i= b i (x ) i ולכן, לפי הנחת האינדוקציה הוא שווה לפולינום האפס, כנדרש. f (x) = T n (x) + R n (x) f (x) T n (x) lim x (x ) n = 0 ולכן, מנכונות עקרון האינדוקציה, הטענה נכונה. סימון: 24.02.200 כאשר (x) R n היא השארית. הגדרה.9 נאמר ש ( I ),(k N {0}) f C k אמ"מ f בעלת k נגזרות רציפות ב I. אם = 0 k הפונקציה רציפה ב I. נרצה לתת הערכה לשגיאה שנותן הקירוב: אינטואיציה קירוב מסדר 0 ממשפט ערך הביניים לנגזרות (לגראנג'): f (x) f () = f (c) (x ) אם אנו יודעים ש ( c ) f חסומה בקטע (x,), נניח ע"י f, M אז f (x) f () M (x ) 9

כאשר (x) f הוא ערך הפונקציה, ו ( ) f הוא פולינום טיילור מסדר 0. ניתן גם לומר: אם m f M ב ( x (, אז: f () + m (x ) f (x) f () + M (x ) R (x) = f (x) f () f () (x ) = f (c) 2 (x ) 2 קירוב מסדר ואז :m f M f () + f () (x ) + m 2 (x )2 f (x) f () + f (x ) + M 2 (x )2 f (x) = T n (x) + f (n+) (ξ) (n + )! משפט השארית נוסח לגראנג' משפט.0 יהי I קטע, (I) f C n+ ו I. (x ) n+ (ξ) f (+n) תקרא השארית נוסח לגראנג'. (n+)! אזי לכל x I קיים x) ξ (, כך ש: כאשר n+ (x ) הוכחה: באינדוקציה על {0} N :n בסיס האינדוקציה = 0 n: במקרה זה, לפי ההנחה, f גזירה ברציפות ב I, ולכן ממשפט הערך הממוצע של לגראנג', f (x) f () = f (ξ) (x ) עבור f בקטע x] [, קיים x) ξ (, כך ש: כמו כן, מההגדרה () T, 0 f (x) = f ולכן נעביר אגפים, נציב ונקבל: f (x) = T 0 f (x) + f (ξ) (x ) כפי שרצינו. נניח שהמשפט נכון עבור 0 n, ונוכיח עבור n: גזירה ב I. f ולכן, לפי הנחה, n, נפעיל את משפט הערך הממוצע של קושי עבור הפונקציות: f (x) T n f (x), (x ) n+ f (x) T n f (x) (x ) n+ = f (η) T nf (η) (n + ) (η ) n בקטע x],[, ונקבל שקיים x) η (, עבורו: 0

וזאת מכיוון ואם נציב בשתי הפונקציות שלנו את נקבל את הערך 0, ולכן הן לא נכללות בחישוב מעלה. נשים : f (η) T nf (η) = f (η) T n f (η) ולפי הנחת האינדוקציה עבור f, קיים (η ξ,) שעבורו: f (η) T n f (η) = n! f (n) (ξ) (η ) n = n! f (n+) (ξ) (η ) n f (η) T nf (η) (n + ) (η ) n = n! f (n+) (ξ) (η ) n (n + ) (η ) n = (n + )! f (n+) (ξ) לכן: ואם נחזור להתחלה, בסה"כ קיבלנו: f (x) T n f (x) (x ) n+ = f (n+) (ξ) f (x) = T n f (x) + f (n+) (ξ) (x ) n+ (n + )! (n + )! כלומר, הוכחנו את הצעד. הוכחנו את בסיס האינדוקציה, והראינו בעזרת ההנחה כי צעד האינדוקציה נכון, f (x) = x, =, x =.. = 2 ξ (. ) (. ) = 0.05 2 0.05. + 0.05. = ± 0.05 ולכן, מנכונות עקרון האינדוקציה, הטענה נכונה! שימושים:. נמצא קירוב מסדר אפס ל. : f (x) = sinx, = 0 x sinx x (= T = 0 + (x 0)) sin (0.) 0. = sin (ξ) 2! (0. 0) 2 2 00 2. נחשב קירוב לינארי ל ( 0. ) :sin נשים לב,x = T, sinx = T 2 ואז: sin (0.) 0. = sin (ξ) 3! (0. 0)3 6 000 f (x) = o (g (x)) lim f (x) g (x) = 0 x f (x) = O (g (x)) k > 0 f (x) k g (x), x הסימון של לנדאו: "או קטן" " או גדול"

נשים לב: f (x) T n (x) = O (x ) n+, f (x) T n (x) = o (x ) n כלומר: f (x) T n (x) k (x )n+ (x ) n (x ) n 25.02.200 וכאשר x, הביטוי מימין שואף לאפס. משפט. יהיו (x) P (x), Q פולינומים ממעלה קטנה או שווה ל n, וכמו כן: lim f (x) P (x) f (x) Q (x) (x ) n = 0 = lim (x ) n אזי (x).p (x) = Q [ f (x) Q (x) 0 = lim x (x ) n ] f (x) P (x) P (x) Q (x) (x ) n = lim x (x ) n הוכחה: P (x) Q (x) lim x (x ) n = 0 R (x) = 0 [ ] 0 = lim (x ) j R (x) (x ) n, j = 0,, 2,..., n 0 = limr (x) R Rtzif = R () = b 0, j = n x יהי (x),r (x) = P (x) Q וכמו כן.degR (x) n אם כך נשאר להראות כי: יהי.R (x) = b 0 + b (x ) +... + b n (x ) n R (x) = b (x ) +... + b n (x ) n = (x ) [b + b 2 (x ) +... + b n (x ) n ] R (x) (x ) n = b + b 2 (x ) +... + b n (x ) n (x ) n 0 = lim x (x ) n R (x) n = lim (x ) x נשים לב: וכמו כן: לכן: כעת אם n :j = [ b + b 2 (x ) +... + b n (x ) n ] = b שוב מרציפות, וכו'. 2

+ x + x 2 +... + x n = xn+ = x x xn+ x x ( + x + x 2 +... + x n) = xn+ x (x ) שימושון נשים לב: כעת אם נסמן: f (x) = נקבל, לפי המשפט מעלה: x, P (x) = + x + x2 +... + x n f (x) P (x) R (x) lim x 0 x n = lim x 0 x n x n ( x) = lim x x 0 x = 0 x n+ = lim x 0 P (x) = T n f (x) כלומר: כעת נוכל להזיז משתנה, ולקבל פולינום טיילור עבור פונקציות נוספות. f ( x) = + x = x + x2... + ( ) n x n + ( )n+ x n+ + x g (x) = ln ( + x) g (x) = x + g (x) = ( + x) 2 g (x) = g (x) =!ln (x + ) = x+ לדוגמא נשים לב אם היינו רוצים לחשב את פולינום הטיילור של ( + x) ln ידנית, ( ) 2 ( + x) 2 [( + x) 2] 2 = ( + x) 3 2 3 ( + x)2 ( ( + x) 3) 2 = 2 3 ( + x) 4 היינו עושים כך: g n (x) = ( )n+ (n )! ( + x) n g (n) (0) = ( ) n+ (n )! n ( ) n+ (n )! T n g (x) = (x 0) i i! i=0 03.03.200 3

f ( x 2) = + x 2 = x2 + x 4 x 6 +... + ( ) n x 2n + ( )n+ x 2n+2 + x }{{ 2 } R(x) נבצע שינוי משתנה נוסף: נסמן = 0, ואז: lim 0 ( ) n+ x 2n+2 x 2n ( + x 2 ) = 0 rctnx = }{{} c =0 היא הנגזרת של!rctn לכן: נשים לב x+ 2 + x x3 3 + x5 5... + ( )n x 2n+ + R 2n+ (x) 2n + הערה.2 פולינום טיילור של סכום פונקציות הוא סכום הפולינומים של הפונקציות f (x) = T n f (x) + R n f (x) g (x) = T n g (x) + R n g (x) זהו אופרטור לינארי! סכום השאריות עדיין ישאף לאפס, לכן סכום הפולינומים יהיה פולינום טיילור של שתי הפונקציות. : x, +x [ 2 x ] = + x x 2 = 2 2 ( + x 2 + x 4 +... + x n) + R }{{} x דוגמא: נביט בחיסור של הפונקציות 0 עבור n זוגי: f (x) g (x) = T n f (x) T n g (x) + R x הערה.3 פולינום טיילור של כפל פונקציות: הביטוי הזה יכול להיות פולינום טיילור מסדר (x n x n ) 2n של (x),f (x) g כמובן זאת אם הפונקציה גזירה 2n פעמים. ניתן "להוסיף לשארית" את החזקות הגבוהות, ואז לקבל פולינום טיילור מסדר n של המכפלה. לקורא החרוץ נשאר להוכיח אכן מדובר בפולינום טיילור, כלומר מתקיים: T n f (x) Rg (x) + T n g (x) Rf (x) + Rf (x) Rg (x) (x ) n 0 משפט.4 תהי f גזירה n פעמים ב, אשר מקיימת: f () = f () =... = f (n ) () = 0, f (n) () 0 אזי אם n זוגי, ל f יש נקודת קיצון ב : 0 < f (n) () minimum 0 > f (n) () mximum אם n אי זוגי, אזי ל f אין נקודת קיצון ב. 4

הוכחה: יהי (x) T n f הפולינום מסדר n של הפונקציה: [ f (x) T n f (x) f (x) f () + 0 = lim (x ) n n! = lim f (n) () (x ) n] (x ) n [ f (x) f () = lim (x ) n ] n! f (n) () = 0 lim f (x) f () (x ) n = n! f (n) () אזי, קיימת סביבה בה הסימן של הפונקציה שווה לסימן הגבול. f (x) f () x < δ sgn (x ) n = sgnf (n) () sgn (f (x) f ()) = sgnf (n) () 0 < x < δ f (x) f () > 0 f (x) > f () δ < x < (x ) < 0 (x ) n < 0 כלומר, קיים > 0 δ כך ש: כאשר n זוגי, המכנה תמיד חיובי, ולכן: אם () < f (n),0 אם ולכן ל f יש נקודת מינימום מקומי ב. בצורה דומה, אם () > f (n) 0, ל f יש מקסימום מקומי ב. sgnf (n) f (x) f () () = sgn (f (x) f ()) = sgn (x ) n sgnf (n) () = sgn (f (x) f ()) < x < + δ sgnf (n) () = sgn (f (x) f ()) אם n אי זוגי, אזי משמאל לנקודה: ומימין לנקודה: לכן f מונוטונית בנקודה ומכיוון שכך, אין לה נקודה קיצון שם. 5

.3 פולינום האינטרפולציה של לגראנג' הרעיון מאחורי פולינום טיילור קירוב של x באמצעות קירוב מסדר I של נקודה. כעת, נביט ביותר מנקודה אחת y = y 0 + y y 0 (x x 0 ) = y 0 (x x 0 ) + y (x x 0 ) y 0 (x x 0 ) x x 0 (x x 0 ) x x 0 (x x 0 ) y = y 0 (x x ) (x 0 x ) + y (x x 0 ) (x x 0 ) עבור x 0 < x ו :y 0, y נקבל פולינום העובר דרך שתי הנקודות ממעלה : עבור שלוש נקודות x 0 < x < x 2 ו :y, y 2, y 3 y = y 0 (x x ) (x x 2 ) (x 0 x ) (x 0 x 2 ) + y (x x ) (x x 2 ) (x x 0 ) (x x 2 ) + y 2 (x x 0 ) (x x ) (x 2 x 0 ) (x 2 x ) וזהו פולינום העובר דרך 3 נקודות ממעלה 2. וכן הלאה. בצורה הזו נגדיר: הגדרה.5 יהיו, n x 0 < x <... < x ו y 0, y,..., y n כולם ב R. אזי, פולינום לגראנג' יסומן להיות: L n (x) = n i=0 n i j=0 y (x x j) i n i j=0 (x i x j ) R n [x] ומתקיים: L n (x i ) = y i טענה.6 (כרגע ללא הוכחה) פולינום זה הינו היחיד מדרגה n המקיים זאת! f (x) = L n (x) + f (n+) (ξ) (n + )! L n (x i ) = f (x i ), i = 0,..., n משפט.7 יהי I קטע ו ( I ).f C n+ יהיו < x 0 < x <... < x n < b ב I. יהי (x) L n פולינום האינטרפולציה של לגראנג' מסדר n, אזי לכל b) x (, קיים b) ξ (, עבורה: (x x 0 ) (x x )... (x x n ) 6

בנייה אחרת של פולינום האינטרפולציה: נרצה לבנות פולינום, כך שבהינתן xו 0 < x <... < x n y 0,..., y n יקיים: 04.03.200 q (x i ) = y i נבנה בצורה אינדוקטיבית. תחילה, נגדיר: q (x 0 ) = y 0 q (x i ) = y i, i = 0,,..., k q k+ (x) = q k (x) + c (x x 0 ) (x x )... (x x k ) q k+ (x k+ ) = y k+ c = y k+ q k (x k+ ) (x x 0 ) (x x )... (x x k ) כעת, נניח כי הגדרנו: נסמן: אזי מספיק לבחור c כך ש: ולאחר שפיתחנו מעלה את האינטואיציה, ניגש להוכיח את המשפט המקורי לפולינום האינטרפולציה: הוכחה: תהי ϕ (x) = f (x) L n (x) c (x x 0 ) (x x )... (x x n ) לכל b),x x 0,..., x n,x (, ניתן לבחור (x) c = c עם = 0 (x). ϕ אם נקבע לרגע את x (ולכן את הבחירה של (x) c), = c מתברר ש ϕ מתאפסת ב x. 0,,... x n,): ב ( b פעמים ל ϕ n נוכל להפעיל את משפט רול לכן ב I. n גזירה מסדר + ϕ x 0 < t 0 < x <... < x n < t n < x n.ϕ (t עם = 0 ) i t 0 < t 2 0 < t <... < t n 2 < t 2 n 2 < t n נפעיל שוב את רול ב ϕ ונקבל:.ϕ ( t 2 i ) עם 2 n 0, i = 0,..., = אם נמשיך ונגזור n פעמים, נקבל נקודה יחידה ) 2 n t (x 0, x ששונה מ x 0,..., x n לפי הבניה שלנו המקיימת = 0 (t).ϕ (n) בהנתן b),x x,..., x n, x (, אם בחרנו (x) c = c עבורו = 0 (x),ϕ 0 = ϕ (n+) (ξ) = f (n+) (ξ) c (n + )! אז נוכל להפעיל שוב את רול ל (n) ϕ ב ( t,x), ונקבל שקיים (t ξ,x) כך ש: נעשה טוויסט למשפט שכבר עשינו לפעמים קוראים למשפט זה Generlized Rolle משפט רול המוכלל, כי הוא מעין הרחבה למשפט רול מאינפי. 07.03.200 משפט.8 תהי (I).f C (n) אם f מתאפסת ב + n נקודות שונות בקטע, 3 I מדוע? כי פשוט נוכל לבדוד את c בצורה הבאה: f (x) L n (x) c = (x x 0 ) (x x )... (x x n) ובהנתן b) x (, כאשר x x 0,..., x n כלשהוא נוכל להתאים c שכזה. 2 ראינו שבכל פעם שגזרנו "איבדנו" נקודת אפס 3 כלומר יש לה + n שורשים. 7

אזי (n) f מתאפסת בקטע הפתוח הקטן ביותר, אשר "מכיל" את הכל האפסים של f. הוכחה: באינדוקציה על n: N בסיס האינדוקציה = n ישירות ממשפט רול המקורי. נניח נכונות עבור n, ונסיק נכונות עבור n תהי (I),f C (n) ויהיו x 0 < x <... < x n שהם + n אפסים שונים של f ב I. נפעיל את משפט רול לכל אחד מהקטעים n,[x i, x i+ ], i = 0,..., ונקבל n t i [x i, x i+ ], i = 0,..., אפסים של.f כמו כן (I) f C (n ) ובעלת n אפסים שונים. לכן, לפי הנחת האינדוקציה, הנגזרת ה n אית של f מתאפס בקטע הפתוח המבוקש, כלומר (n ) f (n) = f מתאפסת בקטע ) n,(t 0, t ומכאן המסקנה! מסקנה.9 אם [x],(degp (x) n) p (x) R n ומתאפס ב + n נקודות שונות, אזי 0 (x).p הוכחה: שוב באינדוקציה על {0} N.n בסיס האינדוקציה עבור = 0 n: p (x) R 0 [x], p (x) 0 R מהנתון קיים x 0 R המאפס אותו. אזי: 0 = p (x 0 ) = 0 לכן 0 (x).p נניח נכונות עבור n. יהי [x],p (x) R n ויהיו x 0 < x <... < x n אפסים שונים של.p לפי המשפט הקודם, [x] p (x) R n מתאפס ב n נקודות שונות, לכן לפי הנחת האינדוקציה 0 (x) p, לכן, לפי משפט הערך הממוצע p. (x) אבל: = p (x ) = 0 p (x) 0 נחזור כעת טיפה אחורה ובעזרת הניתוח האחרון נוכיח את יחידות פולינום האינטרפולציה. L n (x i ) = f (x i ), i = 0,.., n משפט.20 תהי (I),f C (n+) ויהיו x 0 < x <... < x n ב I, ויהיו (t) L n פולינום האינטרפולציה מסדר n המקיים: f (x) = L n (x) + f (n+) (n + )! (ξ) (x x 0) (x x )... (x x n ) אזי לכל x I קיים ξ I המקיים: 8

ϕ (t) := f (t) L n (t) c (t x 0 ) (t x )... (t x n ) הוכחה: נתבונן בפונקציה: כאשר עבור x I נתון מראש, נבחר x i x R, i = 0,..., n עם = 0 (x).ϕ 0 = ϕ (n+) (ξ) = f (n+) (ξ) + 0 (n + )! c c := f (n+) (ξ) (n + )! נשים לב (I),ϕ C (n+) וכמו כן היא מתאפסת ב.x, x 0, x,..., x n ϕ (t) = f (t) L n (t) f (n+) (ξ) (n + )! ϕ (x) = 0 f (x) = L n (x) + f (n+) (ξ) (n + )! f (b) = f () + f () (b ) + f () (b ) 2 2! לכן, לפי מהמשפט הקודם, קיים ξ I עבורו: (t x 0 )... (t x n ) (t x 0 )... (t x n ) כפי שרצינו! נחזור אף יותר אחורה וניתן הוכחה נוספת לצורת לגראנג': משפט.2 תהי (I), f C (n+) ולכל, b I קיים b) ξ (, כך ש: +... + f (n+) (ξ) (b ) n+ (n + )! f (b) = f (t) + f (t) (b t) + f (t) (b t) 2 t = b R n (b, b) = 0 2! +... + f (n+) (t) (b t) n n! t = R n (b, ) T ht s wht we re looking for הוכחה: נתבונן ב: + R n (b, t) }{{} S(t) נשים לב: נגזור את השיוויון לפי המשתנה t. למשל : 4 df (b) = 0 dt ( ) d f (i) (t) (b t) i = [ f (i) (t) (b t) i i + f (i+) (t) (b t) i] dt i! i! [ ] 0 = f (t) + [ f (t) + f n (b t) n (t) (b t)] +... + + f (n+) (t) (b t) n + R n (b, t) n! n! R n (b, t) = f (n+) (b t) n n! פאוזה קצרה: 4 נסו לגזור לבד זה באמת עובד! 9

x x S (t) = R n (b, ) = f (n+) (t) (x t) n dt n! f (n+) (t) (b t) n dt n! אנחנו עדיין לא יודעים את זה, ולכן אסור להשתמש בזה בהוכחה זו, אבל בשביל ההמשך, ובשביל האינטואיציה: = S (x) S () = 0 R n (b ) זה יהיה רלוונטי אחרי שנלמד אינטגרציה, ותחת ההנחה כי (+n) f אינטגרבילית ב I. נפעיל את משפט ערך הביניים נוסח קושי עבור (t) (b t) n+,r n (b, t) = h בקטע b].[, תחילה, מדוע אנחנו יכולים להפעיל את המשפט? גזירה מהגדרתה, ובקטע הפתוח אינה מתאפסת. n n! R n (b, b) R n (b, ) 0 (b ) n+ = f (n+!) (ξ) (b ξ) (n + ) (b ξ) n ( ) = f (n+) (ξ) (n + )! לכן, נקבל: הגדרה.22 בהנתן פולינום אינטרפולציה, לכל (b x,) קיים (b ξ,) עבורה השארית של פולינום האינטרפולציה הינה הביטוי: h (x) = f (n+) (n + )! (ξ) (x x 0) (x x )... (x x n ) h (x) M 4 (n + ) hn+ משפט.23 (כרגע ללא הוכחה): עבור (b x,,) כאשר M היא הנגזרת ה + n של הפונקציה. 20

.4 שיטת ניוטון רפסון המטרה למצוא שורש של פונקציה בשיטה טובה משיטת החצאים. 5 הרעיון בכל פעם ניקח משיק, ומההטלה שלו נבחר את הנקודה הבאה. נשתמש בהנחה סמויה סדרת הנקודות מתכנסת..03.200 y = f (x 0 ) + f (x 0 ) (x x 0 ) y = 0 f (x 0) f (x 0 ) + x 0 = x T (x) = x f (x) f (x) x 0, x = T (x 0 ), x 2 = T (x ) = T 2 (x 0 )... x n := T n (x 0 ) x n := x n f (x n ) f (x n ) δ > 0 x 0 r < δ {x n } (r δ, r + δ) I משפט.24 תהי (I).f (r) = 0,r I,f C 2 נניח ש 0 > f ב I. לכל,x 0 I נגדיר אזי: יתר על כן,.x n r הוכחה: נפתח לפי המשפטים שלמדנו את פולינום טיילור של f עבור x = r בסביבת x, n וכמו כן את שארית לגראנג' שם. נקבל: 0 = f (r) = f (x n ) + f (x n ) (r x n ) + f (t n ) 2 x n+ := x n f (x n) f (x n ) x n+ r = x n r f (x n) f (x n ) x n r = f (x n) f (x n ) + f (t n ) 2 f (x n ) (r x n) 2 (r x n ) 2 כאשר r).t n (x n, הגדרנו: ומצד שני, לפי טיילור ולגראנג': נסמן.e n := x n r אזי נציב ונקבל: e n+ = x n+ r = x n r f (x n) f (x n ) = f (t n ) 2 f (x n ) (r x n) 2 = f (t n ) 2 f (x n ) e2 n כעת, נחסום את הנגזרות, ונמצא את ה δ המיוחל: 5 בה חוצים כל חלק לשניים חיובי ושלילי, עד למציאת האפס. 2

יהי > 0 η עם: I = [r η, r + η] I מהנתון f גזירה פעמיים ברציפות, כלומר הנגזרות מקבלות מקסימום (ומינימום) בקטע סגור. לכן נוכל לסמן: K := mx ( f ) [r η,r+η] k := min ( f ) [r η,r+η] e n+ = f (t n ) 2 f (x n ) e2 n K 2 k e2 n, K k e K 2 k e 0 2 K 2 k δ e 0 < 2 e 0 e 2 < 2 e < 2 2 e 0 e n < 2 n e 0 e n 0 יהי > 0 δ כך ש η < δ < 0 ו < δ ויהי x 0 I עם. e 0 = x 0 r < δ אזי: x n+ = x n f (x n) f (x n ) f (x) = x 2 2 x n+ = x n x2 n 2 2x n = x n 2 x n + x n = 2 x n + x n דוגמא נחפש קירוב ל 2 : בהנחה ש x n מתכנסת, נשאיף את n משני האגפים לאינסוף ונקבל: 2 l + l = l 2 l2 + = l 2 2 = l 2 l = 2 כעת נציב שתי נקודות כלשהן מסביב לשורש שתיים: x 0 = 2, x = 3 2 x 2 = 2 3 2 + 3 2 x 3 = 2 7 2 + 7 2 = 3 4 + 2 3 = 7 2 =.466 = 7 24 + 2 7 = 72 + 2 24 =.44256 24 7 תוך קירוב אחד אנו מגיעים לדיוק טוב יותר מהמחשבון =.442356 2. 22

2 האינטגרל 2.0. שימושים באנליזה בעיית השטח R R µ (R) R כאשר µ היא פונקצית המדידה של השטח. תכונותיה:. חיוביות 0.µ.2 מונוטוניות.µ (R) µ (S) R S.3 אדטיביות יהיו R, S זרים. אזי.µ (R) + µ (S) = µ 4. "בסיס מאורך" (rectngle) µ. 2. האינטגרל לפי דרבו 2.. סכומי דרבו הגדרה 2. חלוקה של [b,] הינה קבוצה סופית סדורה של נקודות } n P = {x 0, x,..., x כך ש b. = x 0 < x <... < x n = דוגמאות:. P = {, b} x 0 = x = + b n 2 (b ) x 2 = + n. x i = +. x n = b i (b ) n 2. החלוקה האוניפורמית עם n קטעים: נסמן ב [,b] B את קבוצת הפונקציות המוגדרות וחסומות בקטע [b,]. 23

M i := sup {f (t) x i t x i } m i := inf {f (t) x i t x i } הגדרה 2.2 יהיו f R ו P חלוקה של הקטע, ויהיו: U (P, f) = U (P ) = M (x x 0 ) + M 2 (x 2 x ) +... + M n (x n x n ) L (P, f) = L (P ) = m (x x 0 ) + m 2 (x 2 x ) +... + M n (x n x n ) x i = (x i x i ) וכמו כן נסמן:,P ביחס לחלוקה f יקרא הסכום דרבו העליון של U (P ) = n אזי, הסכום i= M i x i.p ביחס לחלוקה f יקרא סכום דרבו התחתון של L (P ) = n והסכום i= m i x i L (P ) U (P ) m (b ) L (P ) U (P ) M (b ) נשים לב: יתר על כן, אם m f M ב [ b :[, השטחים מתחת לצורה x הם שליליים, והם יכולים "לקזז" את השטחים החיוביים לדוגמא, נביט באינטגרל של מחזור של סינוס: הוא אפס! 2..2 אינטגרביליות וסכומי דרבו נזכר בלמת החתכים מהסמסטר הראשון (מסקנה ישירה מלמת השלמות): 4.03.200 supl = s i = infu למה 2.3 יהיו שתי קבוצות.L U,L φ U אזי התנאים הבאים שקולים: i!c l L, u U, l c u ii s = i iii ( ε > 0) ( l L, u U) : u l < ε כאשר סימן הקריאה בתנאי הראשון משמעו יחיד. 24

למה זו כאמור לא נוכיח במסגרת הקורס הזה, אבל נשתמש בה להוכחת הלמה הבאה: L (P ) U (Q) למה 2.4 לכל,P Q חלוקות של [b,] את הלמה הזו נוכיח לאחר פיתוחים נוספים. נשים לב שלאחר מכן נוכל להגדיר: הגדרה [,b] 2.5 f R נקראת אינטגרבילית ב [ b,[, אמ"מ קיים I R יחיד עבורו (Q) L (P ) I U לכל P, Q חלוקות של b].[, תנאי שקול: הגדרה 2.6 אמ"מ האינטגרל העליון שווה לאינטגרל התחתון, כלומר: U (f) = inf [U (Q)], L (f) = sup {L (P )} L (f) = U (f) U = {U (Q) : Q is prtition}, L = {L (P ) : P is prtition} נתחיל תחילה נביט בשתי הקבוצות: נשים לב כי הן אינם ריקות. כעת נוכיח למה אחרת: למה 2.7 אם Q מתקבלת מ P ע"י הוספת איבר אחד, אז: L (P ) L (Q) U (Q) U (P ) הוכחה: תהי } n P = {x 0, x,..., x כך ש b, = x 0 < x <... < x n = קיים אינדקס j כך ש.x j < y < x j n n L (P ) = m i x i = m i x i + m j x j n = i=,i j i= i=,i j m i x i + m j [(y x j ) + (x j y)] נסמן: M = sup {f (t) : x j t y}, M = sup {f (t) : y t x j } m = inf {f (t) : x j t y}, m = inf {f (t) : y t x j } נשים לב: m j m, m 25

ולכן: n m i x i + m (y x j ) + m (x j y) = L (Q) i=,i j ובסה"כ: L (P ) L (Q) לתלמיד החרוץ מושאר להוכיח: U (P ) U (Q) באותה הדרך בדיוק! מסקנה 2.8 הלמה הראשונה 2.4 מתקיימת. הוכחה: באופן כללי יהיו,P Q חלוקות כלשהן. נבנה את החלוקה P. Q U (P Q) U (Q) אזי,Q P Q P P Q אזי Q),L (P ) L (P ובסה"כ L (P ) L (Q P ) U (Q P ) U (P ) 2..3 תנאי דרבו לאינטגרביליות משפט 2.9 תהי [,b].f B אזי f אינטגרבילית ב [ b,] אמ"מ ε > 0, P U (P ) L (P ) < ε פירוש גיאומטרי: n n n U (P ) L (P ) = M i x i m i x i = (M i m i ) x i i=0 i=0 i=0 הוכחה: נתרגם את התנאים של למת החתכים לעולם האינטגרלים: i!i L (P ) I U (Q) ii L (f) = U (f) iii ε > 0 Q, P : U (Q) L (P ) < ε בכיוון הראשון, אם התנאי מתקיים, מספיק לקחת,Q = P ואז התנאי השלישי של למת החתכים מתקיים (מספיק שיהיו קיימים,Q P כלשהם). בכיוון השני, נניח ש f אינטגרבילית. אזי קיימות (לפי התנאי השלישי של למת החתכים) P P, כך ש: U (P ) L (P ) < ε 26

תהי P.P = P אזי: P P U (P ) U (P ) L (P ) L (P ) U (P ) U (P ) P P L (P ) L (P ) סימון: אם f אינטגרבילית ב [ b, ]נכתוב [,b],f R b ונסמן ב f את המספר I האחד והיחיד של ההגדרה. דוגמאות:. פונקציות קבועות כלומר פונקציות מהצורה f c אינטגרביליות ב [ b,]. תהי P חלוקה כלשהיא. אזי: m i c M i n L (P ) = m i x i = U (P ) = i=0 n M i x i = i=0 n c x i = c (b ) i=0 n c x i = c (b ) i=0 {U (P )} = {c (b )} = {L (P )} c = c (b ) לכן f אינטגרבילית ו { x Q.[, פונקצית דיריכלה ב [ b D (x) = 2. תהי 0 x / Q תהי P חלוקה, M i, i =,..., n בגלל הצפיפות של Q ב R. לכן: U (P ) = x i = (b ) L (P ) = 0 מצד שני, בגלל הרציפות של R\Q ב R : ולכן D איננה אינטגרבילית. { x = c. < x < b עבור f (x) = 3. תהי f נתונה ע"י 0 x c נשים לב: אם b} P = {, d, e, (כלומר c אינו חלק מהחלוקה) כאשר, < d < c < e < b אזי: U (P ) = 0 (d ) + (e d) + 0 (b e) = e d L (P ) = 0 U (P ) L (P ) = e d 27

f = inf {U (P )} = 0 לכן, לכל > 0 ε נבחר e, d כך ש ε,e d < וכך נעמוד בתנאי דרבו לאינטגרביליות. נקבל: 0.4 תהי f (x) = x 2 ב [,[0, ותהי P החלוקה האוניפורמית של [,0] עם מחלקים שווים (סדרה של חלוקות) אזי: U (P n ) = [ ] n n 2 + 22 n2 +... + n2 n [ 2 ] L (P n ) = 0 + n n 2 + 22 (n )2 +... + n2 n 2 [ t 2 = lim U (P 2 + 2 2 +... + n 2 ] n) = lim n n n n 2 = lim n 3, n בהנתן > 0 ε, נבחר n מספיק גדול כך ש ε < ואז נקבל,U (P n ) L (P n ) < ε ואז אנו עומדים בתנאי דרבו, והפונקציה אינטגרבילית, ומתקיים: n i 2 = i= n (n + ) (2n + ) 6 n (n + ) (2n + ) 6 = 3 לתלמיד הרציני החלף את ה t 2 ב t. הערה 2.0 בדוגמא האחרונה השתמשנו בנוסחא: M, C R 2..4 משפחות של פונקציות אינטגרביליות,]. תהיה קבוצת הפונקציות המונוטוניות ב [ b M,] [b,]. תהיה קבוצת הפונקציות הרציפות ב [ b C,] [b 6 7.03.200 נסמן: משפט 2. או במילים הפונקציות השייכות לקבוצות מעלה הינן אינטגרביליות. הוכחה: נוכיח תחילה לפונקציות מונוטוניות: נניח ש f עולה ב [ b,] (אחרת ניקח f בהמשך נוכיח שגם היא אינטגרבילית ( 7 M i = f (x i ), m i = f (x i ) תהי P חלוקה, אזי: נניח ש P הומוגנית בעלת n חלקים שווים (בהמשך נראה שלכל ε נוכל לספק חלוקה שכזו). 6 בדר"כ בשלב הזה של החומר היינו לומדים פונקציות מדרגות. השנה השתנה הסדר. הידד? 7 "התלמיד הרציני יבנה הוכחה גם לפונקציה יורדת". 28

אם כך: x i = b n U (P ) L (P ) = = b n = b n n i= n i= (M i m i ) x i = b n n (M i m i ) i= (f (x i ) f (x i )) = b n [f (x n) f (x 0 )] [f (b) f ()],n > (b )[f(b) f()] ε כעת, בהנתן > 0 ε נבחר n N המקיים ונקבל חלוקה P המבטיחה קיום תנאי רימן לאינטגרביליות. כעת נוכיח עבור פונקציות רציפות: נניח כי f רציפה ב [ b,]. ממשפט ויירשטראס, מכיוון ו f רציפה, היא מקבלת מקסימום ומינימום בכל קטע סגור. 8 נסמן: M i = mx {f (t)}, x i t x i, m i = min {f (t)}, x i t x i U (P ) L (P ) = כמו כן, שוב מרציפות f, בקטע סגור [b,] היא רציפה במ"ש. x y < δ f (x) f (y) < n i= λ = mx { x i } i=,..,n < δ לכן, בהינתן > 0,ε קיימת > 0 δ כך ש ε (b ) לכן, עבור > 0 ε, נגדיר את החלוקה P כך ש: כאשר λ הינו פרמטר החלוקה של P. כלומר, החלוקה שלנו שומרת שכל שתי נקודות +i x i, x יקיימו: x y < δ (M i m i ) x i < ε b n x i = ε (b ) = ε b i= אזי כנדרש! 2..5 תכונות הפונקציות האינטגרביליות באלגברה לינארית הפונקציות האינטגרביליות ניתנות להגדרה כמרחב וקטורי, והאינטגרציה ניתנת להתבוננות כהעתקה לינארית מהפונקציות לממשיים. ואכן, עשינו זאת באלגברה לינארית. נוכיח כעת את מה שראינו בשיעור הראשון על האינטגרל: 8 ולא רק סופרימום (מינימום או מקסימום) כמו פונקציה כללית. 29

משפט 2.2 יהיו b]. 9 f, g R [, אזי: b. חיוביות אם b] f R [, 0 אזי f.0 b. f b.2 מונוטוניות אם f g אזי g 3. לינאריות (f + g) = f + g (א) kf = k f (ב) יהי k. R אזי: הוכחה: הוא מקרה פרטי של 2. נוכיח את 2: תהי P חלוקה, וכמו כן f. g אזי: m i (f) M i (g) L (f, P ) = m i (f) x i M i (g) x i = U (f, p) f = sup {L (f, P )} inf {U (g, P )} = נוכיח את 3: הוכחה: M i (f) + M i (g) M i (f + g) {f (t) + g (t)} {f (t)} + {g (t)} sup {f (t)} + sup {g (t)} sup {f (t) + g (t)} m i (f) + m i (g) m i (f + g) כעת, נזכר כי הוכחנו: L (f, P ) + L (g, P ) L (f + g, P ) U (f + g, P ) U (f, P ) + U (g, P ) בהנתן > 0,ε נסמן P = P P 2 כך ש: g U (f, P ) L (f, P ) < ε 2 U (g, P 2 ) L (g, P 2 ) < ε 2 ε L (f + g, P ) U (f + g, P ) ε אזי P מקיימת את תנאי רימן עבור f, + g ולכן f + g אינטגרבילית. כעת, נוכיח שיוויון בין f + g לבין f + g : 9 לפי מה שהוכחנו מעלה הן חסומות בקטע [b,]. 30

L (f, P ) L (g, P ) L (f + g, P ) f U (f, P ) g U (g, P ) f + g U (f + g, P ) עכשיו, נשתמש במשפט מעלה: לכל P מתקיים: L (f, P ) + L (g, P ) L (f + g, P ) L (f, P ) + L (g, P ) f + f + g U (f + g, P ) U (f, P ) + U (g, P ) f + g = g U (f, P ) + U (g, P ) ומצד שני אם נחבר את אי השיויונות: כיוון שקיים רק מספר אחד ויחיד כזה, מתקיים: (f + g) 8.03.200 משפט 2.3 תהי b],m f M,f R [, ותהי g : [m, M] R רציפה, אזי: g f R [, b] הוכחה: נגדיר: h := g f בהנתן > 0 ε, לפי תנאי לאינטגרביליות, עלינו להציג חלוקה P של [b,] עם U (h, P ) L (h, P ) < ε בהיות g רציפה בקטע [M,m], היא גם רציפה במ"ש בו. אזי, בהינתן > 0 ε יהי > 0 δ עם: x, y [m, M] x y δ g (x) g (y) < ε נשים ל יהיה תנאי הכרחי בהמשך. b],f R [, לכן, לפי תנאי רימן, קיימת חלוקה P של [b,] עם: ( ) U (f, P ) L (f, P ) < δε 3

טענה 2.4 U (h, P ) L (h, P ) < [(b ) + (L l)] ε M i = sup {f (t)}, m i = inf {f (t)}, x i t x i L i = sup {h (t)}, l i = inf {h (t)} כאשר l, L מקיימים.l h L הוכחה: יהיו: g B [m, M], f B [, b] h = g f B [, b] 0 נחלק עתה את הנקודות שלנו לקבוצות G, goodies, B bddies בצורה הבאה: i G M i m i δ i G L i l i < ε i B δ < M i m i הקטעים הנמוכים, בהם M i m i δ הם הטובים, כי יכולנו לתחום אותם. הקטעים האחרים הם בעייתים,Bddies ועליהם נצטרך להשקיע עוד קצת עבודה. כעת: n U (h, P ) L (h, P ) = (L i l i ) x i = (L i l i ) x i + (L i l i ) x i i= i G i B (L i l i ) x i < ε n x i ε x i = ε (b ) i G i G i= n ( ) = (M i m i ) x i < δε δ x i < (M i m i ) x i < δε i= i B i B δ i B x i < δε i B (l L) i B x i < (L l) ε U (h, P ) L (h, P ) = i G = [(b ) + (L l)] ε x i < ε i B (L i l i ) x i + i B (L i l i ) x i i B (L i l i ) x i (L i l i ) x i < ε (b ) + (L l) ε ולכן הפונקציה h אינטגרבילית, כנדרש. f 2 R [, b] מסקנה 2.5 תהי b].f R [, אזי: מסקנה 2.6 אם גם b] g R [, אז b].f g R [, זאת כי ראינו כי: (f + g) R [, b] (f + g)2 f 2 g 2 = f g R [, b] 2 B = Bound 0 32

מסקנה 2.7 כמו כן, b]. f R [, 2.03.200 מסקנה 2.8 אם > 0 f וחסומה מאפס, אז b]. f R [, המשך המסקנות: מסקנה 2.9 אם < m g M,0 אזי 0 < M g m. g אזי b] R [, למה 2.20 תהי b] f, f B [, רציפה ב ( b.(, אזי b].f R [, הוכחה: נניח ש M.m f בהנתן > 0 ε נבחר < c < d < b המקיימות: (M m) (c ) < ε 3, (M m) (b d) < ε 3 לאחר בחירה של,c, d נשים לב ש f רציפה ב [ d,c] ולכן אינטגרבילית בו. לפי קריטריון רימן, תהי Q חלוקה של [d,c] המקיימת: U (Q) L (Q) < ε 3 אזי נגדיר b}.p = Q {, כעת: U (P ) L (P ) = (M m) (c ) + U (Q) L (Q) + (M m) (b d) < ε 3 + ε 3 + ε 3 = ε מסקנה 2.2 אם [b f B,] בעלת מספר סופי של נקודות אי רציפות, אזי b].f R [, הגדרה 2.22 אם b} P = { = x 0 <... < x n = חלוקה של b].[, אזי n} λ (P ) = mx { x i, i =,..., יקרא פרמטר החלוקה. הערה 2.23 קיימות חלוקות של P עם פרמטר קטן כרצוננו בהנתן > 0 δ מספיק לבנות חלוקה אוניפורמית עם n חלקים, כאשר: b n < δ כמסקנה, התלמיד הרציני יוכיח את המשפט הבא: תהי f בקטע [b,], ונניח שלכל תת קטע סגור פנימי הפונקציה אינטגרבילית. אזי הפונקציה אינטגרבילית בכל הקטע. 33

הגדרה 2.24 תהי f חסומה, ו.A D f אזי התנודה של f ב A תסומן להיות: ω (f, A) = M m כאשר: M := sup {f (t), t A} m := inf {f (t), t A} ω (f) = ω (f, D f ) הערה 2.25 אם b] f B [, ו P חלוקה של b],[, אזי: n n U (P ) L (P ) = (M i m i ) x i = ω i x i ω i = ω (f, [x i, x i ]) i= i= למה 2.26 תהי b],f B [, ותהי P חלוקה של b],[, ונניח כי : P = P {y} אזי U (P ) L (P ) U (P ) L (P ) + ωλ (P ) הוכחה: תחת הסימונים מההגדרות מעלה, קיים j יחיד עם x. j < y < x j w = (M m ) (y x j ) w = (M m ) (x j y) w j = (M j m j ) (x j x j ) w j (w + w ) M m }{{} λ (P ) ω(f) U (P ) L (P ) = U (P ) L (P ) (w + w ) + w j U (P ) L (P ) + ω (f) λ (P ) משפט 2.27 תהי [b f. B,] אזי התנאים הבאים שקולים:. ε > 0 P U (P ) L (P ) < ε 2. ε > 0 δ > 0 P λ (P ) < δ U (P ) L (P ) < ε 34

הוכחה: 2 טריוויאלי : 2 בהנתן > 0,ε תהי b} Q = { = x 0 < x <... < x l+ = חלוקה של b],[, U (Q) L (Q) < ε < ε אשר מקיימת לפי : נניח ש f אינה קבועה, לכן 0 ω, ונניח ש l. 2.λ (P ) < ε ε lω ε ε = δ <.0 אזי, תהי P עם lω תהי נתבונן ב Q P. נשים לב שהוספנו לכל היותר l נקודות ל P. Q P Q L (Q) L (P Q) U (P Q) U (Q) U (P Q) L (P Q) < ε P מתקבלת מ Q P ע"י השמטה של l נקודות לכל היותר, לכן לפי הלמה הקודמת: U (P ) L (P ) U (P Q) L (P Q) + lωλ (P ) < ε + lωλ (P ) = ε + (ε ε ) = ε b f := f כמו כן: הגדרה 2.28 תהי b]. < b,f R [, אזי: f = 0 ואם < c < b אזי: f := c f + c f < b b < נניח כי f. M אזי יתקיים: f f M (b ) f = f f M ( b) = M b b f b כלומר בכל מקרה: f M (b ) 2 כלומר החלוקה מכילה לפחות 3 נקודות. 35

2.2 האינטגרל לפי רימן 2.2. סכומי רימן הגדרה 2.29 תהי b] f B [, ו P חלוקה. נכנה בשם סכום רימן S של f עבור P ביטוי מהצורה: n S = f (t i ) (x i x i ) i= כאשר.x i t i x i משפט 2.30 תהי b].f R [, אזי לכל סדרה P n של חלוקות עם סדרת פרמטרים ) n λ P) ששואפת ל 0, ולכל סדרה ) n S) של סכומי רימן של f עבור P n בהתאם, מתקיים: S n f 2.2.2 אינטגרביליות רימן הגדרה 2.3 תהי f מוגדרת ב [ b,]. נאמר ש f אינטגרבילית לפי רימן, אמ"מ קיים מספר J R המקיים:.04.200 ε > 0 δ > 0 S S J < ε כאשר S סכום רימן של f עבור חלוקה P של b] [, עבורה.λ (P ) < δ תרגיל: הוכיחו את יחידות המספר J! למה 2.32 תחת תנאים אלו, f חסומה ב [ b,]. הוכחה: נניח כי f עומדת בתנאי ההגדרה כלומר כי קיים J כנ"ל. אזי, בפרט עבור = ε יהי > 0 δ מתאים, ויהי S סכום רימן של f עבור חלוקה מסויימת P עבורה λ. P) ) < δ כלומר, יהיו: n = x 0 t x... t n x n = b, S = f (t i ) x i לכן, מתקיים: < S J < + J < S < + J יהי ] j,s j [x j, x כאשר j n. נגדיר: i= S j = i j f (t i ) x i + f (s j ) x j 36

נשים לב סכום רימן S j זה מתאים אף הוא לאותה החלוקה P. על כן, גם הוא מקיים: + J < S j < + J S S j < 2 S S j = f (t j ) x j f (s j ) x j 2 + f (t j ) x j < f (s j ) x j < 2 + f (t j ) x j 2 + f (t j ) x j x j < f (s j ) < 2 + f (t j) x j x j זה נכון לכל הנקודות בקטע ] j x], j, x לכן הפונקציה חסומה בכל קטע מסוג זה, ולכן היא חסומה ב [ b,]. 2.2.3 קריטריון קושי משפט 2.33 תהי f מוגדרת ב [ b,]. אזי f אינטגרבילית לפי רימן אמ"מ: ε > 0 δ > 0 S, S S S < ε כאשר S S, סכומי רימן של f עבור חלוקות שעבורן.λ (P ) < δ הוכחה: בכיוון הראשון, נניח כי f אינטגרבילית לפי רימן. אזי, בהינתן > 0 ε יהי > 0 δ אשר מבטיח את התנאי הבא: S S J < ε = ε 2 עבור סכום רימן כלשהוא של f עבור חלוקה P עם λ. P) ) < δ יהיו S,S סכומי רימן של f עבור חלוקות עם פרמטר חלוקה גדול מ δ בהתאם. אזי: S S = S J + J S S J + J S ε 2 + ε 2 = ε בכיוון השני, נניח ש f מקיימת את תנאי הקריטריון. נבחר סדרה S n של סכומי רימן של f עבור סדרה P n של חלוקות בהתאם המקיימות λ. P) ) < n. S S < ε 2 בהנתן > 0,ε יהי > 0 δ אשר מבטיח לכל S,S סכומי רימן של f עבור חלוקות עם פרמטר חלוקה קטן מ δ בהתאם,. n < N < δ מתקיים N < n N, ולכן עבור N קיים N N עם < δ אזי, בהנתן :N < n, m N S n S m < ε ומכאן ש S n הינה סדרת קושי ועל כן היא מתכנסת. יהי J גבולה. נראה ש J מקיים את תנאי ההגדרה: בהנתן > 0 ε, ε 2 = יהי > 0 δ שמתאים לו לפי הקריטריון. נבחר אינדקס m N המקיים את שני התנאים הבאים: iλ (P m ) < δ ii S m J < ε = ε 2 יהי S סכום רימן של f עבור חלוקה P עם λ. P) ) < δ אזי: S J S S m + S m J < ε 2 + ε 2 = ε 37

2.3 המשפט היסודי של האינפי 2.3. המשפט היסודי גרסא רשמית 4.04.200 F := t משפט 2.34 תהי f אינטגרבילית ב [ b,], ותהי: f (t) dt, t b אזי F רציפה ב [ b,]. יתר על כן, F גזירה בכל [b x,] בה f רציפה, ומתקיים: F (x) = f (x) הוכחה: למעשה נוכיח טענה חזקה יותר, ומתוכו תנבע נכונות המשפט מעלה. F (y) F (x) = y f x f = y x f M y x יהיו b].x, y [, אזי: כאשר f M ב [ b [, 3. לכן, מצאנו כי למעשה F הינה ליפשיץ ב [ b,], ולכן רציפה במ"ש ב [ b,], ובפרט רציפה בקטע [y,x]. F (x) F (c) x c = F (x) F (c) x c x f c f x c תהי b],c [, ונניח ש f רציפה ב c. 4 עבור :x c x c = f x c f (c) = 0 F (x) F (c) x f (c) x c = c f x c f (c) x c x x c = c f x x c f (c) c x c = x [f (t) f (c)] dt c = x c t [, b] t c < δ f (t) f (c) < ε יספיק לנו להראות: x c f x נעשה זאת: c f (c) x c f רציפה ב c, ולכן, בהנתן > 0 ε יהי > 0 δ עם: x c < δ F (x) F (c) x c f (c) ε x c x c = ε ולכן: 3 החסימות נובעת כמובן מאינטגרביליות הפונקציה 4 שהרי המשפט מדבר על נקודות בהן f רציפה 38

F (x) = x במקרה שבו הפונקציה f רציפה בכל נקודה, יכולנו להוכיח בצורה הבאה: f (t) dt F F (x) F (c) (c) = lim x c x c F (x) F (c) = x c f (t) dt c < x m (x) f (t) M (x) m (x) (x c) m (x) f (c) x c x c x c m (x) x f (t) dt M (x) (x c) f (t) dt M (x) x c c f (t) dt x c M (x) 2.3.2 המשפט היסודי גרסא שימושית למת"פ משפט 2.35 תהי f רציפה ב[ b,], ותהי G גזירה ב [ b,] עם G, = f אז: f (t) dt = G (b) G () (G F ) = G F = f f 0 f (t) dt = F (b) F () x הוכחה: תהי F (x) = f (t) dt כמקודם. אז: G F = C (constnt) G (b) G () = (F + C) (b) (F + C) () = F (b) + C (F () + C) = F (b) F (),]! [b גזירה בכל F רציפה, ולכן f 2.3.3 המשפט היסודי גרסא שימושית לאינפי 2 הגדרה 2.36 נאמר ש F קדומה של f ב [ b,] אם F רציפה, גזירה פרט אולי למספר סופי של נקודות ב [ b,]. ומקיימת F = f בכל נקודה אחרת. 39

משפט 2.37 תהי f אינטגרבילית ב [ b,], ו F קדומה שלה באותו הקטע. אזי: f (t) dt = F (b) F () הוכחה: נראה שלכל חלוקה P של [b, ]מתקיים: L (P ) F (b) F () U (P ) בה"כ ניתן להניח ש P מכילה את כל אותן הנקודות, אם יש כאלה, במספר סופי, ש F אינה גזירה בהן. P = { = x 0, x,..., x n = b} F (b) F () = F (x ) F (x 0 ) + F (x 2 ) F (x ) +... + F (x n ) F (x n ), i n לכל (x i, x i וגזירה ב ( [x i, x i רציפה ב [ F ולכן, לפי משפט ערך הממוצע, קיימים ) i t i (x i, x עם: F (x i ) F (x i ) = f (t i ) (x i x i ) n F (b) F () = f (t i ) x i i= ביטוי אחרון זה הינו סכום רימן של f עבור עבור P. על כן: n L (P ) f (t i ) x i U (P ) i= ומכאן נכונות הטענה. 2.3.4 המשך דיון משפט 2.38 תהי f רציפה ב [ b,]. אזי, קיים b) c (, המקיים: f (t) dt = f (c) (b ) x הוכחה: תהי f F. (x) = f (t) dt רציפה. אזי, לפי המשפט היסודי: f (t) dt = F (b) F () L grnge = F (c) (b ) = f (c) (b ) 40

2.4 האינטגרל הלא מסויים ושיטות אינטגרציה הגדרה 2.39 נאמר ש F קדומה של f בקטע I אמ"מ F = f ב I. הגדרה 2.40 נגדיר את האינטגרל הלא מסויים בצורה הבאה: f := {F F = f} = F + C, C constnt { x dx = lnx + C x > 0 = ln x + C ln ( x) + C 2 x < 0 דוגמא: k R (f + g) = נשים לב כי גם במקרה של האינטגרל הלא המסויים מתקיים: kf = k f + f g נלמד כעת מספר שיטות למציאת פונקציה קדומה: 2.4. אינטגרציה לפי הצבה e x2 + C = e sinx + C = e lnx + C = e x + C = F (g (x)) + C = F (t)+c e x2 2xdx e sinx cosxdx e lnx x dx e x 2 x dx f (g (x)) g (x) dx = f(t)dt, t=g(x), dt=g (x)dx תחילה, דוגמאות: מהי השיטה? דוגמאות: 5.04.200 x 2 dx x=g(t)=cos(t) = g (t)= sin(t) cos2 (t) ( sin (t)) dt = t = g (x) = rccos (x) dx = rccosx + C x 2 dt = t + C. 4

x2 dx x=cos(t) = t=rccos(t) cos2 (t) ( sin (t)) dt = T rig sin 2 cos (2t) (t) = 2 ( ) = cos (2t) = 2 [ dt sin 2 (t) dt ( ) ] cos (2t) dt dt = 2 2 [t 2 ] sin (2t) + C = [sin (t) cos (t) t] + C 2.2 כעת, לאינטגרל המסויים: 8.04.200 משפט 2.4 תהי d]) g C ([c, (כלומר g גזירה ברציפות בקטע זה), ותהי f רציפה ב ([ d g.,c]) אזי g (f g) אינטגרבילית בקטע d] [c, ומתקיים: f (x) = d c f (g (t)) g (t) dt כאשר (d). = g (c), b = g דוגמא: x2 dx 0 x=cos(t) = t=rccos(t) π π = 0 = 2 cos2 (t) ( sin (t)) dt = π π π 0 sin 2 (t) dt cos (2t) dt = dt + cos (2t) dt = π + 2 2 2 2 0 0 [ π + ] 2 sin (2t) π 0 = [π + 2 ] 2 (0 0) = π 2 π 0 cos (2t) 2dt הוכחה: תחילה, נשאל, מדוע (t) f (g (t)) g אינטגרבילית? g גזירה ברציפות ב [ d,c], ובפרט היא רציפה, ולכן f g רציפה בקטע זה, ולכן f g אינטגרבילית שם. מצד שני, g רציפה ב [ d,c], ולכן היא אינטגרבילית בקטע זה. ולכן, בסה"כ, אלו שתי פונקציות אינטגרביליות, ולכן הכפל שלהם אינטגרבילי גם כן. b כעת, תהי F.F () = f (x) dx היא קדומה של,f כי f רציפה ב [ b,[, ומתקיים: x [, b] F (x) = f (x) (f g) g = (F g) g Chin rule = (F g) כעת: 42

נשים זוהי פונקציה רציפה, ולכן (g F) הינה קדומה של g f). (g לכן, לפי המשפט היסודי בגרסא השימושית (המעבר הראשון והאחרון): d f (g (t)) g dt = (F g) d c = F (g (d)) F (g (c)) = F (b) F () = c f (xdx) נשים לטעות נפוצה אם f גזירה, אזי f אינה בהכרח אינטגרבילית! 2.4.2 אינטגרציה לפי חלקים יהיו,g f פונקציות בעלות נגזרות רציפות. אזי: (f g) = f g + fg f g = (f g) fg f g = (f g) f g = f g f g f g {}}{ e x {}}{ x dx f (x) = e x, g (x) = = e x x e x dx = e x x e x + C דוגמאות:. f {}}{{}}{ sin (x)dx = e x sinx e x g = e x sin (x) e x cos (x) 2 f {}}{{}}{ cos (x) dx = e x sin (x) e x g e x ( sin (x)) dx e x sin (x) dx = e x sin (x) e x cos (x) e x sin (x) dx = ex sin (x) e x cos (x) 2 + C [ e x cos (x) ] e x ( sin (x)).2 sin 2 (t) dt = f T rig = cos (t) sin (t) + 2 g {}}{{}}{ sin (t) sin (t)dt = ( cos (t)) sin (t) dt sin 2 (t) dt sin 2 (t) dt = t cos (t) sin (t) sin 2 (t) dt = t cos (t) sin (t) 2 + C ( cos (t)) cos (t) dt.3 43

ln (x) dx = f {}}{ g {}}{ ln (x)dx = xln (x) x dx = xln (x) x + C x.4 f (x) g (x) dx = f (x) g (x) b משפט 2.42 יהי b]).f g C ([, אזי: f (x) g (x) dx f g b = הוכחה: תהי g) (f רציפה ב [ b.[, כנ"ל g f ו g.f לכן, שלושתן אינטגרביליות ב [ b.[, (f g) (x) dx = [f (x) g (x) + f (x) g (x)] dx = f g קדומה של g),(f ולכן, מהמשפט היסודי: f (x) g (x) dx + f (x) g (x) dx הערה f 2.43 רציפה ב [ b,]. 2.4.3 האינטגרל הלא מסויים הגדרה 2.44 תהי b].f R [, אזי לכל b] :c [, 2.04.200 F c (x) = x c f (t) dt תקרא אינטגרל לא מסויים של f ב [ b,]. F c (x) = x c f = c f + x f }{{} F :=F נשים מלינאריות: אם f רציפה ב [ b,], אזי F גם קדומה של f ב [ b,]. מה ההבדל בין אינטגרל לא מסויים לפונקציה קדומה? מתוך וויקיפדיה (מכיוון ועד כה לא הצלחתי להבין מה צביק עשה יעודכן בתקווה בהמשך): האינטגרל המסוים של פונקציה נתונה על פני קטע סופי הוא מספר השווה לשטח הכלוא בין ציר ה x לגרף הפונקציה בין קצוות הקטע. האינטגרל לא מסויים של פונקציה f אינו כבול לקטע זהו אוסף כל הפונקציות הממשיות שנגזרתן שוות ל f. 44

F (x) = F (x) = F (x) = f (x) x f במשפט היסודי, אם f רציפה, אזי:.F c (x) = x c מקיימת: כנ"ל לגבי כל 2.4.4 עוד קצת עם פולינום טיילור בהקשר הזה תהי b].f C n [, הגדרנו את פולינום טיילור (x) T n f כל ש: f (x) = T n f (x) + R n (x) R n (x) = x f (n+) (t) (x t) n dt n! משפט 2.45 אם b],f (n+) R [, אזי: f (x) = f (t) + f (t) (x t) +... + f (n) (t) (x t) n dr n (x, t) dt S (x) S () = הוכחה: באחת ההוכחות של פולינום טיילור, ראינו כי: n! + R (x, t) }{{} =S(t) ולכן: = S (t) = f (n+) (t) (x t) n n! לכן, S קדומה של הביטוי מימין באותו הקטע, ולכן מהמשפט היסודי: x f (n+) (t) (x t) n dt n! S (x) = 0 ( R n (x, x)), S () = R n (x) R n (x) = x f (n+) (t) (x t) n dt n! f (x) = 2.4.5 עוד כמה נקודות... דוגמא לפונקציה שיש לה קדומה, אך אינה אינטגרבילית: { x 2 sin ( ) f (x) = x x 0 2 0 x = 0 { 2xsin ( ) 2cos( x ) 2 x 2 x x 0 0 x = 0 f גזירה ב R. נביט בנגזרת: היא אינה חסומה בסביבה כלשהיא של אפס, ועל כן איננה איטגרבילית בקטע המכיל את הראשית. 45

דוגמא לפונקציה שאין לה קדומה: תחילה, נביט בפונקציה [x] f (x) = פונקציה זו לא מקיימת את הדרישה! יש לה קדומה, אפילו רציפה וגזירה באפס. נבצע מניפולציה קלה: f (x) = x [x] פונקציה זו אינה רציפה בכל נקודה בה x. Z בכל קטע סביב נקודה שכזו לא תהיה פונקציה קדומה כי היא לא מקיימת את משפט דרבו לערך הביניים של נגזרת. לכן, פונקציה כזו לא יכולה להיות נגזרת של פונקציה אחרת! בנוסף, נביט בפונקציית רימן יש לה אינטגרל לא מסויים, "פונקציה מצטברת", כמו לכל פונקציה אינטגרבילית. האינטגרל הלא מסוים הזה גזיר בכל נקודה. אם הוא היה רציף הוא היה פונקציה קדומה. אבל, פונקציית רימן גם היא אינה מקיימת את משפט ערך הביניים של דרבו לנגזרת, ולכן היא לא יכול להיות נגזרת של פונקציה בקטע. 2.5 פונקציית מדרגות הגדרה 2.46 נאמר ש ϕ המוגדרת בקטע [b,] הינה פונקציית מדרגות, אם קיימת חלוקה b} P = { = x 0 < x <... < x n = של b],[, וקיימים c,..., c n R כך ש ϕ (xi,x i) c i נסמן את קבוצת פונקציות המדרגות ב [ b S.,] קבוצה זו סגורה לחיבור וכפל בסקלר ולכן הינה מרחב וקטורי. 5 סוג של משפט, והוכחה "באוויר" S [, b] R [, b] מאדטיביות ניתן להוכיח אינטגרביליות בכל תת קטע, וזה מספיק לאינטגרביליות של הפונקציה כולה. בכלל, כל פונקציה המקיימת תכונות טובות "למקוטעין" רציפה למקוטעין, גזירה למקוטעין, מונוטוניות למקוטעין אינטגרבילית. משפט 2.47 תהי [b f. B,] אזי התנאים הבאים שקולים:.[, b] אינטגרבילית בקטע f. ε > 0 ϕ, ψ S [, b] ϕ f ψ ϕ ψ < ε.2 5 היא גם סגורה לכפל ולכן מקיימת מבנה חזק יותר. 46

ε > 0 g, h R [, b] g f h h g < ε.3 הערה 2.48 אם b],f B [, אזי לכל חלוקה P של b] [, L (P ) = ϕ, ψ = U (P ) קיימות b] ϕ, ψ S [, המקיימות ϕ f ψ כך ש: הוכחה: להערה: ψ (xi,x i) M i = sup {f (t) x i t x i } ϕ (xi,x i) m i = inf {f (t) x i t x i } ϕ (x i ) = f (x i ) = ψ (x i ) 22.04.200 נוכיח את המשפט: הוכחה: 2 נניח ש [ b f. R,] אזי, לפי ההערה, f מקיימת את תנאי 2, b.l (P ) = ϕ, U (P ) = b כלומר קיימות,ϕ ψ כנ"ל כך ש ψ בנוסף, לפי קריטריון האינטגרביליות של רימן, לכל > 0 ε קיימת חלוקה P של [b,] כך ש: U (P ) L (P ) < ε ψ ϕ < ε לכן: 2 3 טריוויאלי, שהרי ראינו כי b] S [, b] R [, h g < ε = ε 3,ε = ε 3 יתקיים: 3 בגלל הההנחה, עבור כל ε, בפרט עבור h := inf {U (h, Q)} לכל חלוקה Q, נגדיר את:,ε = ε 3 קיימת חלוקה P h המקיימת: לכן, בהנתן U (h, P h ) < h + ε 47

g := sup {L (g, Q)} ε = ε 3 קיימת חלוקה P g המקיימת: לכן, עבור אותו כמו כן, נגדיר: g ε < L (g, P g ) תהי.P := P g P h אזי: g ε < L (g, P g ) L (g, P ) L (f, P ) U (f, P ) U (h, P h ) < U (f, P ) L (f, P ) < h g + 2ε Assumption < ε 3 + ε 3 + ε 3 = ε h + ε כנדרש! 25.04.200 2.6 פונקציות רציונליות R (x) = P x (x) + P (x), degp < degq Q (x) P (x) = C (x ) n... (x n ) nr (x 2 + 2b x + c ) m... ( x 2 + 2b 2 x + c s ) ms, 0 < nj, m j > 0 A כאשר < 0 c b 2 j (הדיסקרימיננטה) עבור. k l, k l, j s כל פונקציה רציונלית מהצורה הזו ניתן להציג כסכום של שברים פשוטים. (x ) + A 2 (x ) 2 +... + A n (x ) n B x + C 2. (x 2 + bx + c) + B 2x + C 2 (x 2 + bx + c) 2 +... + B mx + C m (x 2 + bx + c) m כלומר ביטויים מאחת מן הצורות הבאות: I n = (x 2 + 2 ) n dx, n N x 2 + 2 x 2 I n = (x 2 + 2 ) n dx = (x 2 + 2 ) n dx + 2 + I n x 2 x (x 2 + 2 ) n dx = (x 2 + 2 ) n }{{} x dx }{{} g f... נראה השימוש בסדרות: וכו', המשך יוקלד בהמשך... 2.6. נוסחאת וואליס 48

2.7 האינטגרל הלא אמיתי נרצה להכליל את מושג האינטגרל ולהגדיר: 28.04.200. אינטגרל על קטעים לא חסומים. 2. איטגרל של פונקציות לא חסומות. 2.7. אינטגרל על קטעים לא חסומים הגדרה 2.49 תהי f מוגדרת בקטע ) [, I = כאשר. R נניח ש f אינטגרבילית בכל קטע מהצורה [b,] כך ש R. < b lim b f f (x) dx = lim f b נאמר ש f אינטגרבילית ב I אמ"מ קיים הגבול: f (t) dt במקרה זה נסמן גבול זה ע"י: כלומר: ונאמר שאינטגרל זה מתכנס. אחרת, נאמר שהאינטגרל f מתבדר. דוגמאות 0 + x 2 dx 0 0 π dx = rctn (b) rctn (0) + x2 b 2 e x dx = lim b ( e x ) b 0 = 0 ( e 0) = 0 0 x dx dx = lim x b ln b = sin (x) dx = lim b ( cos (b) ( )) גבול זה לא קיים, לכן האינטגרל מתבדר...2.3.4 49

2.7.2 תכונות האינטגרל הלא אמיתי יהיו g, f איטגרביליות בקטע ) [,.I = f 0 f 0. חיוביות: f g f g 2. מונוטוניות: f + g = k R 3. לינאריות נשים לב שכאן יש מסקנה מוסתרת של קיום: f + kf = k g f < c < c f = f + c f 4. אדטיביות: 2.7.3 קריטריון קושי משפט 2.50 תהי f אינטגרבילית בכל קטע b] [, עבור < b (כאשר קבוע, ולכל.(f R [, b] < b ε > 0 B R b, b R B < b < b b f < ε מתכנס אמ"מ f ההוכחה מושארת כתרגיל אך נובעת ישירות ממשפט קושי לגבול של פונקציה. 50

2.7.4 מבחן ההשוואה משפט 2.5 יהיו,f g אינטגרביליות בכל תת קטע סגור של הקטע (,] I. = נניח שקיים < k R 0 כך שלכל f (x) kg (x) x I.0 אזי: מתכנס. מתבדר. מתכנס, גם f. אם g מתבדר, אזי גם g.2 אם f F (b) := f (t) dt הערה 2.52 עולה (כי 0 f) ולכן f מתכנס אמ"מ F חסומה. הוכחה: ל : F (b) := f (t) dt G (b) := מתכנס, ולכן: מתכנס, ולכן מלינאריות kg g kg (x) dx מתכנסת. מתכנס אזי G חסומה, ולכן F חסומה, ועל כן f לפי ההערה, מכיוון ש kg ל 2 : בשלילה, אילו האינטגרל של g היה מתכנס, אזי האינטגרל f היה מתכנס, בסתירה להנחה. דוגמאות e x2 dx e x dx <. x e x2 < e לכל, < x לכן: e x2 dx לכן, לפי מבחן ההשוואה: e x dx מתכנס, ולכן גם: מתכנס גם הוא. 5

2. נביט ב: f (x) = x P { x α dx = lnb 0 < α R, α = α x b α α אם > :b, 0 > α מתכנס אמ"מ >,α ובמקרה זה: x α dx = α לכן x α dx 0 f (x) = sinx x dx { sinx x x 0 x = 0 דוגמא מאוד חשובה ומעניינת! כאשר כוונתנו כמובן היא לפונקציה הרציפה: sinx x dx P rts = cosx x b ( cos (x)) ( x ) 2 dx האינטגרל הנ"ל מתכנס: lim b sinx x מתכנס. 0 dx = cos () cosx x 2 dx מתכנס, 6 ולכן: sinx x מתכנס, ומכאן כי dx cosx x האינטגרל dx 2 sinx x ולכן הגבול קיים, ו dx 6 כמובן שאת זה צריך להוכיח אולם עדיין לא למדנו. בהמשך יוכח ע"י התכנסות בהחלט ומבחן ההשוואה. 52

מתכנס. B < < b < b b 2.7.5 התכנסות בהחלט ובתנאי מתכנס בהחלט אמ"מ f הגדרה 2.53 נגיד ש f f < ε משפט 2.54 התכנסות בהחלט התכנסות. b f < ε הוכחה: נוכיח בעזרת תנאי קושי בהנתן > 0,ε קיים B R כך ש: b f b f < ε אבל אנו יודעים כי: ומכאן הטענה. הגדרה 2.55 נאמר ש f אינטגרבילית בתנאי ב (,] I = אמ"מ מתבדר. מתכנסת, אבל f f sinx x dx מתבדר. sinx x דוגמא מתכנס בתנאי. מדוע? נראה כי dx sinx, ולכן לכל,sin 2 x sinx x R ולכן: sin 2 x x sinx x נזכור, מטריגונומטריה: cos2x = 2sin 2 x sin 2 x = cos2x 2 sin2 x x = 2 ( x cos2x ) x ולכן: מתבדר, sin 2 x x מתבדר, ולכן dx x dx מתכנס, אבל cos2x x dx ולכן, לפי מבחן ההשוואה, sinx x dx מתבדר. 53