<4D F736F F D20E2E9E0E5EEE8F8E9E420F2F6E1F8E9FA2E646F63>

גודל: px
התחל להופיע מהדף:

Download "<4D F736F F D20E2E9E0E5EEE8F8E9E420F2F6E1F8E9FA2E646F63>"

תמליל

1 יאומטריה עצרית ידיעה טעית היא מתנה פלאית שה ניחן כל אדם. ידיעה טעית מולת למושי יסוד כמו, זמן, מידה, צורה, חם, קר, מרחק, תנועה, צע, דומה, שונה, שווה, סימטרי, כמות, וכו' ידיעות טעיות מושות פשטות ומלי שימת ל, על פי מט, שמיעה, הליכה, מע, וכדומה כאשר מדור ידיעות טעיות אין יתרון לפרופסור המלומד, על זה שלא למד. ידיעות טעיות מהתחום היאומטרי. קו, הצורה האחידה של הקו, ומידת האורך של הקו. לקטע קו המשורטט עזרת סרל יש צורה אחידה מסוימת, ומידת אורך מסוימת. השם המוסכם של צורת קו הסרל הוא צורה ישרה. (לכן הקו נקרא קו ישר ( ידיעת הצורה אה עקות מט פשוט מיטים על הקו ויודעים את צורתו המחשת הצורה הישרה עזרת שרוך מתוח שרוך רפוי ממחיש קו על צורה אחרת, ואפשר לתת לה שם מוסכם, כמו צורה כפופה לכמות הצורות עולם אין ול, ולכל צורה אפשר להתאים שם מוסכם.. כל צורה נודעת מט פשוט, וכך יודעים אותה וזוכרים אותה. לצורות מיוחדות יש שמות מוסכמים, אך לא לכולם. השם המוסכם של הצורה האה הוא זווית. כיוון כיוון קו ישר קו ישר נקודה לכל זווית יש צורה ייחודית, ואין טעם לתת לכל זווית שם. זווית מפורסמת עלת שם מוסכם היא זו ושמה המוסכם זווית ישרה כיוון כיוון נקודה כל הזוויות נחין שני קווים ישרים היוצאים מאותה נקודה, לשני כיוונים. ניתן לצייר זוויות ללא הלה, ולכל זווית צורה ייחודית משלה, הנתפסת מט. לכל מצולע סור יש צורה ייחודית הנודעת מט פשוט. השם המוסכם לצורה של מצולע ן 3 צלעות הוא משולש יש אינסוף צורות של משולשים, ואין טעם לתת לכולם שמות צורה זה שם של ידיעה טעית האה מעצמה מיטים ויודעים. ם מידה זה שם ידיעה טעית, האה מעצמה - עושים ויודעים..

2 יאומטריה עצרית לקו הישר המופיע ציור יש ם מידת אורך משלו. מוש המידה הוא יסודי, והשתו אה עקות מעשה פשוט. מניחים אצע יד ימין קצה הימני של הקו, ואצע יד שמאל קצה השמאלי של הקו, ועקות המעשה הפשוט הזה, יודעים את מידת האורך של הקו הזה. ככה יודעים מידה על פי מעשה, ולא על ידי הסר מילולי. מידת האורך של הקו הזה, היא דיוק המידה הזו כפי שהיא מופיעה מציאות. מידת אורך זו אינה קטנה, אינה דולה, והיא דיוק היא. זוהי מידת אורך מוחלטת מסוימת, הנתפסת עזרת מעשה פשוט.. מוש המידה הוא כל כך יסודי וכל כך פשוט, והוא נתפס על ידינו אופן לתי מודע. הסר זה מעלה את מוש המידה, מהתת מודע אל המודע. למקל של מטאטא ולעיפרון יש צורה ישרה, ולכל אחד מאלה יש מידת אורך ייחודית משלו. תפיסת העיפרון קצותיו מיאה לידיעת מידת אורכו, ותפיסת המקל קצותיו מיאה לידיעת מידת אורכו. מוש המידה קשור למושים המנודים דול-קטן, ואנו יודעים כי המקל ארוך יותר מהעיפרון. ואילו מוש הצורה, קשור למושים המנודים דומה-שונה. צורה ומידה הם שמות של ידיעות טעיות אין כל אפשרות להסיר מלים ידיעות טעיות. עקות מט על הקו יודעים ידיעה טעית, ולאחר מכן נותנים שם לידיעה זו ועקות מע קצוות הקו יודעים ידיעה טעית אחרת, ולאחר מכן נותנים שם לידיעה זו. כך או לעולם המושים היסודיים - צורה של קו, ומידת אורך של קו. אין כל טעם לשאול מהי צורת קו? ולצפות לתשוה מילולית. אין כל טעם לשאול מהי מידת אורך של קו? ולצפות לתשוה מילולית. השואל מהי צורת קו? אומרים לו תיט מיתר הקשת ותדע, ותן שם לידיעה שהשת. אם תרצה, יש כר שם מוסכם לידיעה זו והוא צורה.. השואל מהי מידה? אומרים לו "תעשה ותדע " ע קצות המיתר וידעת" לאחר שידעת, תן שם לידיעה. אם תרצה, יש כר שם מוסכם לידיעה זו והוא - מידה. למושי היסוד מידה וצורה, יש שפת מידות ושפת צורות. שפת המידות היא שפת המספרים, והיא שפה מדעית כמותית ומדויקת. שפת הצורות היא שפה מעורפלת, שה יש שמות מוסכמים לידיעות הנתפסות מט.. דומה לשפת מידות : אורך מיתר הקשת דול מאורך החץ, פי 1.5 קירו דומה לשפת צורות : לקשת צורה עקומה, ודריכתה היא מתעקמת יותר. המיתר ישר, ותהליך הדריכה הוא מקל צורות של זוויות ההולכות ונעשות חדות יותר ויותר. שפת הצורות המעורפלת הפכה לשפה מדעית מדויקת, כאשר הופיע ה "מספר היחס". צורה ומידה הם שמות מוסכמים לידיעות טעיות האות מאליהן עקות מט ומע ישיר. המט על תפוז מיא לידיעת צורתו, ותפיסתו ידיים מיאה לידיעת מידתו. המט על אטיח מיא לידיעת צורתו, ותפיסתו ידיים מיאה לידיעת מידתו צורת התפוז כמעט דומה לצורת האטיח, ומידת האטיח דולה ממידת התפוז למוש המידה כאן שני פנים נפח האטיח דול מנפח התפוז ) פן יאומטרי ( משקל האטיח דול ממשקל התפוז (פן פיסיקלי ( ולסיכום צורה ומידה הן שמות של ידיעות טעיות האות מאליהן, עקות מט ומעשה.

3 יאומטריה עצרית ראון: ההקדמה הזו מוזרה מאוד, היא מכוונת אותי להשי ידיעות על פי מט ומעשה, ולאחר מכן לתת שמות לידיעות הללו. אני חיי לציין שלא ידעתי כי צורה זה שם של ידיעה טעית. שמעון: אין ספק שצורה זה שם של ידיעה טעית, הרי כל תינוק מזהה צורות לי ללמוד. לוי: עצם, ם תנועה זה שם של ידיעה טעית, והיא קשורה למושים המנודים, מהיר - איטי שמעון: וכן אנו כר יודעים כמה ידיעות טעיות, ששמן המוסכם הוא צורה, מידה, ותנועה. ראון: מה? כר אין הדרות לצורה, תנועה, או מידה? לוי: מי צריך הדרות כאשר יש ידיעה טעית? וכלל מהי הדרה? ראון: קוצת מלים המסירה מלה לא מונת. (לדומה, קוצת מלים המסירה את המלה "ידיעה" ( לוי: אם תכתו ספר שלם, לא תוכל להסיר את המלה "ידיעה" שמעון: אני יודע שאני יודע, או אני יודע שאיני יודע, מה שלא יהיה מדור פלא פלאים. לוי: אכן פלא פלאים, הרי "צורה זה שם מוסכם לידיעה פלאית האה עקות מט פשוט". שמעון: אני מסכים, הידיעה היא פלאית,וכר השנו אורח פלא את ידיעת הצורה, המידה, והתנועה. לוי: איזה יופי, אין צורך ללמוד את הידיעות הפלאיות היסודיות, הן טועות נו לי שנריש. ראון: אתה תופס את מה שאתה אומר? אין צורך ללמוד? לוי: כדי להיות רופא יש להשקיע שנים רות של לימוד, על יסוד ידע וניסיון שנצרו משך דורות. אך לא כך הוא קשר לידיעות הטעיות הפלאיות, שאותן אנו יודעים לי לימוד- מספיק לעשות ולדעת. ראון: אולי אתה צודק? הרי "קר" הוא שם של ידיעה טעית המושת מע ישיר דופן מקרר. לוי: הידיעות מושות התנסות, (ללא מלים ( ורק לאחר מכן נותנים להם שמות. ראון: עכשיו רור לי שאי אפשר להעיר ידיעות טעיות אמצעות מלים, יש להתנסות ולדעת. שמעון: וכל זאת, אני אנסה להצי כמה מידיעותיו הטעיות של אופה הפיתות אמצעות מלים.. א. לוש צק חיית להיות צורה, מידת נפח, ומידת שטח פנים..מעיכת וש הצק משנה את צורתו ומשנה את מידת שטח פניו, אך נפחו נשאר קוע. נפח הוא דר אחר משטח, אך מוש המידה משותף ם לשטח ום לנפח. ד.צורת וש הצק נועת מצירוף מידות של שני דרים עלי מידה, והם נפח ושטח. ה.אין קיום נפרד לנפח או לשטח, ולכן הצורה היא מחוית המציאות. לוי: הנה שמעון הצליח להעיר ידיעות אמצעות מלים, הרי הנתי על מה הוא מדר. ראון: הוא הצליח מכיוון שכר ידענו את הידיעות הטעיות האלה התנסות אישית. כל אדם תפס פעם וש צק או וש חימר, ועיצ את צורתו על ידי לחיצות ומעיכות. לוי :אל אין טחון שכל מעצ השי את הידיעה "שצורה נועת מצירוף מידות של שטח פנים ונפח" ראון :מוש המידה קודם ויסודי יותר ממוש הצורה, הרי זו נועת מצירוף מידות של שני דרים אחרים שמעון: אין ספק קדימותו של מוש המידה, אני יודע ום אתה יודע ומכיר "שלושה דרים עלי מידה", והם מושים דרך של מעשה. הליכה מלה דר על מידה, ושמו המוסכם מרחק. (יש מרחק דול ומרחק קטן ( מע פני שולחן מלה דר אחר על מידה ושמו המוסכם שטח (יש שטח דול ושטח קטן ( ותפיסת לון מלה דר אחר על מידה ושמו המוסכם נפח. לוי: יצאנו ממלכודת המלים של הדרות, והענו אל ידיעות אמיתיות עזרת מעשים. שמעון: וידיעות אלו הושו עזרת מט פשוט ומעשה פשוט. ראון: וכר שמנו ל שמוש המידה קודם למוש הצורה לוי: למוש המידה יש שפת מידות, והיא שפת המספרים. שמעון: היע הזמן שנכיר את השפה הזו.

4 4 --- יאומטריה עצרית לוי: איך נקשר ין המצאת המספרים למוש המידה? ראון : הנה כך, עם קו ישר על מידת אורך משלו, המיוצת פשטות על ידי האות א. ישקף את מידת אורך א, וזו תסומן 1 א 1 ח' ח' ח' ח' ח' ח' מ' מ' מ' מ' ע' ע' ע' ע' מ' ע' מ' מ' ע' מ' ע' שמעון: יפה, הנתי. היות ו 1 זה מספר מוחלט הנודע רק מעצמו, והיות שהקו המצויר מצי מידת אורך מוחלטת הנודעת רק מעצמה, (והיא מיוצת אות א) הרי ניתן לשקף את אורך הקו עם 1 לאחר שיקוף זה, הזיהוי של הקו המסוים הזה יהיה על פי 1 א 1 א לא מון לי לוי: השילו שמעון: אם נייצ את מידת האורך של עמוד חשמל עם האות ח, מה ייד השילו 1 ח? לוי: הוא ייד שמידת האורך של עמוד החשמל משתקפת 1 1 ע?, מה ייד השילו שמעון: אם נייצ את מידת האורך של עיפרון אות ע לוי: הוא ייד שמידת האורך של העיפרון משתקפת 1 שמעון: אם נייצ את מידת האורך של מקל מטאטא אות מ, מה ייד השילו 1 מ? לוי: הוא ייד שמידת האורך של מקל המטאטא משתקפת 1 שמעון: זה כל הסיפור, אפשר לשקף 1 כל מידת אורך מוחלטת הנודעת מתוך עצמה. לכן חיי להופיע היטוי המשול של 1 ואות לידו, כאשר האות מייצת מידת אורך מוחלטת מסוימת ראון: וכן נייצ מידות אורך מוחלטות אותיות, ולכל מידת אורך יוצמדו תי המידה שלה לוי: תי מידה? מה פירוש תי מידה? ראון: אם היטוי 1 ח מיצ את כל אורכו של עמוד החשמל, הרי היטוי 2 'ח מייצ את מחצית אורכו ו 3 'ח מייצ את שליש אורכו, ו 4 'ח מייצ את רע אורכו וכן הלאה לוי: הנתי, אלה הם תי המידה של ח, 2, 7, 6, 5, 4, 3, וכן הלאה שמעון: ואלה הם תי המידה של מ (אורך מקל מטאטא ( 2, 5, 4, 3, וכן הלאה, 5, 4, 3, 2 וכן הלאה ראון: ואלה הם תי המידה של ע (אורך העיפרון) שמעון: אנו דנים מידות אורך מוחלטות, אמיתיות, כפי שהן מופיעות מציאות. 1 מ יותר ארוך מ 1 ע, ו 1 מ 1 ח יותר ארוך מ ראון: לכן 2 'מ יותר ארוך מ 2, ו שמעון: ם 2 'ח יותר ארוך מ 2 לוי: וכן יש לי שאלה מסקרנת שמעון: מה השאלה? לוי: האם יתכן "אירוע שוויוני " ין תי המידה של מ ו ע? ראון: אני לא מין? משוואה כזו ראויה לשם "משוואה תית" 12 'ע = 77 לוי: האם יתכן קיומה של משוואה כמו זו ע. והיא מייצת אירוע שוויוני ין תי המידה של מ ו ראון: אתה צריך לפרט את "האירוע השוויוני הזה " ( 77 מ ל 77 חלקים שווים, ונשים חלק יחיד צד, (סימון החלק לוי: אם נחלק את ( 12 ואם נחלק את ע ל 12 חלקים שווים ונשים חלק יחיד צד, (סימון החלק ואם נלה להפתעתנו כי יש שוויון מושלם אורך החלקים ששמנו צד, אז התקיים "אירוע שוויוני" = אירוע שוויוני זה מיוצ על ידי המשוואה התית ע ין תי המידה של מ ו ע שמעון: אתה מדר על ילוי מידת אורך זעירה מסוימת,שהיא "מידת מקור משותפת" לאורכי מ ו,והיא מופיעה שני החלקים ששמנו צד. לוי: כן, האירוע השוויוני מלה מידת אורך זעירה מסוימת 77 (מידת מקור משותפת) אם מידת אורך זו נצרת על עצמה 77 פעמים נקל את אורך מ לכן מ = 12 (מידת מקור משותפת) ואם מידת אורך זו נצרת על עצמה 12 פעמים נקל את אורך ע לכן ע =

5 יאומטריה עצרית ראון :הכל דמיון כמו חלום- אירוע שוויוני הוא חלומי,משוואה תית היא חלומית,מידת מקור משותפת ם היא חלומית, ואילו המשוואה מ = 77 (מידת מקור משותפת )היא משוואה ינתחומית, המקשרת ין התחום החלומי לתחום הממשי.(מ היא מידת אורך ממשית,ואילו " מידת מקור משותפת" היא חלומית) ) מעתה, מממ - קיצור של מידת מקור משותפת ( לוי: וכן שאלתי שאלה רעיונית, תיאורטית, דמיונית, חלומית.ום שאלה כזו אפשר לשאול. האם יתכן "אירוע שוויוני " ין תי המידה של מ ו ע? שמעון: שאלה קשה שאלת, האם לך - יש תשוה? לוי : לדעתי אירוע שוויוני לא יתרחש ין תי המידה של מ ו ע. שמעון: זה סתם ניחוש, ומה הוא עדיף על הניחוש המנוד שכן יתרחש אירוע שוויוני ין תי המידה. ראון: הכל דמיון כמו חלום, אירוע שוויוני הוא חלומי, משוואה תית היא חלומית, מממ ם היא חלומית, ונוסף לכל אלה יש ם משוואה ינתחומית המקשרת ין החלום למציאות. שמעון: סדר סדר, כר רור לכולנו שאנו עוסקים תחום דמיוני, תיאורטי, חלומי, ולא תחום ממשי. ראון: עיסוק הזה יש מקום לניחושים, ולוי כר הצי זאת את הניחוש שלו.. שמעון: עדיף ללכת עקות הידיעה הטעית, מקום ניחושים. ראון: ומה אומרת ידיעתך הטעית? שמעון: אני יודע שאחת מהאפשרויות חיית להתרחש,(כן/לא - אירוע שוויוני ( אל לא אדע מי תתרחש. ראון: הצת ם ידיעה ום אי ידיעה. שמעון: היות ואני יודע (שאיני יודע איזה מהאפשרויות תתרחש (, הצתי ם כאן ידיעה טעית. ראון: פלא פלאים, אתה ם יודע ום לא יודע. לוי: הידיעה היא פלאית, ואין ספק שאנו יודעים כי אנו יודעים שמעון: ואין ספק שאנו ם יודעים - כי אנו לא יודעים. ראון: אולי אתה סומך יותר מדי על ידיעתך הטעית? שמעון: ועל מה נסמוך אם לא על ידיעתנו הטעית? הרי אפשר לסס מדע על ידיעה טעית. ראון: אני ממש מתפעל מנפלאות הידיעה הטעית אנו יודעים שאנו יודעים ולפעמים - אנו יודעים שאנו לא יודעים. לוי: נדמה לי שהענו לכלל חשו הנוע "לצירוף מידות אורך שרירותי", כמו לדומה אורך מקל של ), שחולק אופן שרירותי לשני מטאטא ואורך עיפרון,או סתם קו כמו ציור (על מידת אורך משלו, "צירוף מידות שרירותי" כזה, יכונה קיצור צמ"שר.. חלקים לא שווים. א, א ראון: ומהו הכלל החשו שחל על "צירוף מידות שרירותי"? לוי: הנה, זה הכלל צמ"שר חיי להיות או מסו ) שי ( או מסו (אין) ואין לנו כל אפשרות לדעת מאיזה סו הוא. ראון: צריך לפרט מהו צמ"שר מסו ) שי ( ומהו צמ"שר מסו (אין) שמעון: צמ"שר מסו ) שי ( יש אירוע שוויוני, יש משוואה תית, יש מממ, ויש משוואה ינתחומית. צמ"שר מסו (אין) אין אירוע שוויוני, אין משוואה תית, אין מממ, ואין משוואה ינתחומית. ראון: כל הנתונים שהצת שייכים לתחום החלומי, כלל צמ"שר שייך לתחום החלומי.. שמעון : אתה צודק, כל הנתונים שייכים לתחום החלומי, ורק אורך א ואורך שייכים לתחום הממשי.

6 יאומטריה עצרית ראון: וכן מה הטעם כל הדיון הזה? הרי כל ידיעתנו מצטמצמת לאורך הממשי של א ו שמעון: ראון צודק? התחום החלומי אולי יפה ומרתק, אל אין טעם לדון ו. לוי: אולי יופיע טעם המשך? אולי? כל אופן אני מציע להמשיך ולפתח את הנושא. ראון: אתה עקשן אני יודע. שמעון: לפני שנצלול אל תוך התחום החלומי, נראה מה יש לנו עוד תחום הממשי ראון : מה יש כר תחום הממשי? אורך א ואורך, וזה הכל. שמעון: יש משוואות הנועות ממדידה.. לוי: משוואות הנועות ממדידה? ואיך נשי את המשוואות האלה? שמעון: יש לי סרל המוסס על צירת אורך מוחלט זעיר ושמו מילימטר ) קיצור מ"מ ( האורך המוחלט הזה מופיע כעוי של כרטיס אשראי. ישמש כמידת מקור משותפת ממשית. (מממ ממשית) האורך המוחלט הזה (שהוא לוי לחושים (, ואקל משוואות חד תחומיות,מהתחום הממשי.. עזרת סרל זה אמדוד את אורך א ואורך הנה הן המשוואות: כ 19 מ"מ = א = כ 82 מ"מ לוי: מה עושה האות כ לפני המספרים משוואות? 82 מ"מ שמעון: מדידת אורך - א - עזרת הסרל נתנה תוצאה של "פחות או יותר" מדידת אורך - עזרת הסרל נתנה תוצאה של "פחות או יותר" 19 מ"מ הקיצור של "פחות או יותר" הוא האות כ, ולכן היא מופיעה לפני המספר. מעיד על שוויון מושלם. האין מדידה מושלמת שתיתן תוצאה מושלמת ראון: סימן השוויון משוואה =? מ"מ = דיוק מ"מ כמו לדומה.. א = דיוק שמעון: אין מדידה מושלמת, אל תמיד אפשר לשפר את המדידה ולקל תוצאה יותר מדויקת. - ואם תרצה אפשר להשתמש שיטה של לתוצאת המדידה תמיד יש לצרף את האות כ 82.5 מ"מ. וקטן מ 82.2 מ"מ לדומה אורך א דול מ "ודול מ" " קטן מ" מיעים תחום מספרי צר, ולא מספר. ראון: שיטת "קטן מ" "דול מ" שמעון: נכון, התחום מוצ על ידי שני מספרי אורך, כאשר האורך האמיתי ) והלתי ידוע ( אמור להיות איפה שהוא תוך התחום הזה. ככל שהמדידה מדויקת יותר, כך התחום המוצ צר יותר. ראון: שיטת "קטן מ" "ודול מ" עדיפה על שיטת "פחות או יותר" המיוצת על ידי האות כ שמעון: זוהי שיטה מקולת חיים המעשיים, ונתוני ההזמנה של חריטת ליל מתכת, יכללו תמיד תחום. 48 מ"מ ) פלוס מינוס 0.03 מ"מ) לדומה : קוטר הליל המוזמן יהיה לוי: אם תוצאה של מדידה תוצ תמיד עזרת שני מספרים המיעים תחום צר, אפשר לייעל את אופן אורך א = (5)82.2 ההצה הזה רישום מקוצר המיע תחום, והוא נראה כך לדומה ראון: כלומר? וכאשר נחליף את הספרה האחרונה לוי: זה רישום מקוצר של שני מספרים. המספר הראשון הוא, של המספר הראשון, ספרה שנמצאת תוך הסוריים, נקל את המספר השני והוא שמעון: אכן זהו רישום מקוצר של תחום מספרי, ורק חסר לו שם לרישום המקוצר הזה. לוי: מספרפר זה שם לא רע, יש לו צליל של שני מספרים. שמעון: מספרפר, יפה, שם קולע ראון: מדדתי את והי והמספרפר (5)174 ס"מ אמור להיע את תוצאת המדידה. רוח התחום הוא 1 ס"מ לוי: רמת הדיוק לא מספקת, ראון: קשה למדוד מדויק, אל ניסיתי והעתי למספרפר (8)174.3 ס"מ, המצי תחום של 0.5 ס"מ שמעון: אתה טוח שהוה האמיתי שלך נמצא ין ס"מ ל ס"מ? ראון: כן, זוהי תוצאת המדידה שלי.

7 7 - יאומטריה עצרית א' ' שי והו של ראון = (8)174.3 ס"מ היא משוואה מעשית הנועת ממדידה, שמעון: המשוואה ס"מ כאשר סימן השוויון מתייחס לוה האמיתי והלתי ידוע, הנמצא ין ס"מ ל לוי: אני מחפש את המדידה המושלמת המסולת ללות אורך אמיתי, אולי היא קיימת תחום החלומי? שמעון: עד שנמצא את המדידה המושלמת, נחזור אל אורך ונמדוד את אורכי א, מדויק ככל האפשר,ואת תוצאות המדידה נרשום עם משוואות מעשיות שמופיע הם מספרפר ולא מספר. ראון: יפה, מוש המספרפר כר שימוש. = (2)19.0 מ"מ א = (5)82.2 מ"מ,כלומר = (7) מ"מ מ"מ ל לוי: ומה עם אורך? שמעון: לפי מדידות אורכי א ו הוא נמצא ין ראון: ואם תמדוד את אורך אופן ישיר?, כמו = ( 101.3(6 מ"מ שמעון: אני מקווה שאקל תוצאה הנמצאת תחום הזה לוי: אם המדידות שלך מדויקות ומסולות להחין עשיריות של מילימטרים, תקוותך תתשם. שמעון: שטח המעשי נדרשות לפעמים מדידות מדויקות המסולות להחין ם מאיות של מ"מ ראון: ואלפית של מ"מ, יש מדידות המסולות להחין? שמעון: זה כר הול, כיוון ששינויי טמפרטורה משנים את אורך הופים הנמדדים. לוי: יפה, ועכשיו נעור מהתחום הממשי אל התחום החלומי. הקו האנכי מחלק את אורך לשני חלקים לא שווים, ואלה יוצרים צמ"שר אם זהו צמ"שר סו (יש),אז יש לו משוואה תית (נניח = ( ולכן יש לו מממ. לצמ"שר סו ) ( כזה, נתאים משוואות ינתחומיות מושלמות, שמופיע הם מספר ולא מספרפר 128 מממ-ח = 40 מממ-ח א = ראון: מה זה מממ-ח? לוי: קיצור של מידת מקור משותפת חלומית, כאשר מממ-מ הוא קיצור של מידת מקור משותפת ממשית. שמעון : משוואה מעשית יש מממ-מ הנתפסת חושים, ושמה המוסכם מ"מ ואילו משוואה ינתחומית יש מממ-ח שאינה נתפסת חושים. תחום החלומי הדיוק הוא מושלם, ותחום המעשי אין דיוק מושלם. פרט לזה, יש דמיון מלא ין התחומים. לוי: לאחר שאנו יודעים כי יש מממ-ח לאורך א ולאורך, אפשר למדוד את אורך א על פי אורך ראון: מה פירוש למדוד את אורך א על פי אורך? לוי: אורך א יהיה האורך הנמדד, ואורך יהיה אמת המידה ראון: ואיך תמדוד? לוי: עזרת המספרים המשקפים את אורך א ואת אורך. היות ו 40 נכנס 3.2 פעמים, 128 הרי מדידת אורך א על פי אורך = 3.2 ראון: אני לא מין לוי: זה כמו שנמדוד אורך של מקל מטאטא על פי אורכו של עיפרון, אם נלה שאורך העיפרון נכנס 7 פעמים אורך המקל, הרי מדידת אורך המקל על פי אורך העיפרון = 7

8 8 - יאומטריה עצרית ראון: לפי מה שהסרת, כ 7 "זה" אינו כמו כ 7 "ריל" שמעון: 7 זה מציע על כמות של פעולות תהליך המדידה המיוחדת, עם אמת המידה הנחרת. ראון: ולכן מכנים אותו שם "מספר יחס" כדי להדילו "ממספר ריל" שמעון: מספר יחס הוא מספר המיע תוצאה של מדידה מיוחדת. מדידה כזו נתונים מראש המידות "של הנמדד ושל אמת המידה" והם מניים מספר המטא את יחסם זה לזה.לכן הוא נקרא "מספר יחס". לוי: אפשר למדוד את אורך העיפרון עזרת סרל, ום זו תהיה מדידה מיוחדת שתני מספר יחס שמעון: אתה צודק, כאן נתונים מראש מידות האורך של העיפרון ושל מידת אורך מוסכמת המופיעה על הסרל, ושמה המוסכם מילימטר, וקיצור מ"מ. אם נמדוד את אורך העיפרון על פי מ"מ, נקל מספר יחס כמו כ 212 לוי: אפשר למדוד ם את אורך המקל על פי מ"מ, ולקל מספר יחס כמו כ 1450 ראון: המספרים האלה ) כמספרים רילים ולא כמספרי יחס) משקפים את אורכי המקל והעיפרון. לוי: אפשר לצע מדידה מיוחדת על מספרים? שמעון: למה לא, הרי 212 נכנס כ 7 פעמים 1450 ראון: כר יצענו מדידה מיוחדת על מספרים ששיקפו את אורך א (128 ( ואורך (40), וקילנו את מספר היחס 3.2 לוי: אני מציע שהרישום המקוצר א// ייע מעתה את "מדידת אורך א על פי אורך " א// = מספר יחס 3.2 ראון: עכשיו הכל רור, כאשר שואלים "מהו מספר היחס ין והו של לוי לוהו של שמעון? מצעים את התהליך הא: מודדים את היחס ין והו של לוי לוה של מילימטר, ומקלים נניח מספר יחס כ 1737 לאחר מכן מודדים את היחס ין והו של שמעון לוה של מילימטר,ומקלים מספר יחס כ 1687 לאחר מכן מודדים את היחס ין המספרים כ 1737 ו כ 1687 ומקלים מספרפר יחס (7) לכן, מדידת וה לוי "על פי" אמת מידה שהיא וה שמעון היא המספרפר (7) לוי: כדאי לרשום " על פי" מלה אחת "עלפי" שמעון: פעולת "עלפי" המניה מספר יחס,היא פעולת חשון מעניינת. לוי : עכשיו אני שם ל לשלוש פעולות חשון עם "הדלים דקים", וכדאי להדישם. פעולת "חלקי" שנסמנה כך /// פעולת "הקטן" שנסמנה כך / ופעולת "עלפי" שכר סומנה כך // והיא זו שמניה את מספר היחס. 4 וזה פירוט הפעולות. פעולת חלקי: חלוקת 16 ל 4 חלקים שווים חיית להני את התוצאה לכן 16 חלקי 4 ירשם קיצור 16///4 והתוצאה היא ואילו חלוקת 16 ל 4 חלקים שווים ושימוש חלק יחיד מחלוקה זו, תרשם כ 16 הקטן לכן 16 הקטן 4 ירשם קיצור 4 16/ והתוצאה היא 4 ואילו מדידת 16 עלפי 4 מניה את התוצאה שאמת המידה 4 נכנסת 4 פעמים 16 לכן 16 עלפי 4 ירשם קיצור 16//4 והתוצאה היא מספר היחס 4 שמעון: טו ששמת ל לדקויות, הרי מספר יחס לא מוש פעולת "חלקי", ולא פעולת "הקטן" פעולות אלו התוצאה היא תמיד חלק או חלקים מהמספר, ואילו פעולת עלפי התוצאה אומרת " כמה פעמים נכנסת אמת המידה נמדד". ראון: מה פתאום ננעלנו על המוש - מספר יחס?

9 9 - יאומטריה עצרית שי שי,ולכן ניתן להשי את מספר היחס א// לוי: צמ"שר מסו ) ( יש מספרים משקפים לאורכי א ו מה יקרה? ואם נניח שזהו צמ"שר מסו (אין) ראון : אתה הנחת שזהו צמ"שר מסו ) (, 128 מממ-ח = 40 מממ-ח א = שמעון : מקרה זה נישאר רק שלוש מידות אורך מוחלטות ואת הישה הזו כר ממשנו מדידת סרל.,א עם אפשרות לישה מעשית לד, ראון: ההנחה שהקטעים א מהווים צמ"שר מסו ) שי ( היא הנחה נוחה ופשוטה, ואילו ההנחה שהקטעים א מהווים צמ"שר מסו (אין) היא עייתית ומורכת. כאשר נניח שזהו צמ"שר מסו (אין) קענו כך כי לא מתקיים אירוע שוויוני ין תי המידה של א ולכן אין משוואה תית ואין מממ-ח, וכמון אין משוואות ינתחומיות. שמעון: נכון, זהו דיוק צמ"שר מסו (אין) ראון: אם אין משוואות ינתחומיות,אז אין מספרים משקפים לאורכי א (כמו 128 ו ( 40 שמעון: מה אתה מחדש?, הרי זהו צמ"שר מסן (אין) ראון: החידוש הוא זה שפתאום המתמטיקה נהפכת לחסרת אונים מול קו פשוט המחולק לשני חלקים לא שווים, והיא לא יכולה לשקף את אורכם של החלקים האלה מספרים. לוי : זה אמת מיך, מה ההסר לכך? שמעון : ההסר הוא פשוט, לכל המספרים יש מממ והיא, 1 ואם יש אורכי קווים ללא מממ-ח כמו צמ"שר מסו (אין) - אז אין שיקוף ל, 1 ואי אפשר לשקף את אורכם מספרים. לוי: וזה עוד לא הכל, לצמ"שר סו (אין (, ם אין מספר יחס, פשוט לא קיים מספר יחס כזה. ראון: איך יתקל מספר יחס? הרי הוא אמור לנוע ממספרים משקפים לאורכי א, ואין כאלה. שמעון: צמ"שר סו (אין) לעולם לא נוכל להיד " פי כמה דול אורך א מאורך " לוי: אכן צמ"שר סו (אין) יצר מוכה מתמטית דולה. ראון: זו מוכה תיאורטית, הכל הוא חלום, הרי לא הצלחנו לזהות את סו הצמ"שר הזה. שמעון: נכון, פעם הנחנו שזה צמ"שר מסו ) שי (, והענו למשוואות ין תחומיות,ופעם הנחנו שזה צמ"שר מסו (אין) ונשארנו רק עם האורכים המוחלטים של א ו ראון: זה מה שאני טוען כל הזמן, אנו עוסקים תחום החלומי חסר הטעם, ואת העיקר הזנחנו. שמעון: ומהו העיקר? ראון: צריך למצוא שיטה לזיהוי סוי צמ"שרים, ולא להניח הנחות. שמעון: איך אפשר? הרי זוהי משימה לתי אפשרית, על פי כלל צמ"שר האומר :. כל צמ"שר הוא מסן ) שי (, או מסו (אין) אך לעולם לא נדע איזה סו הוא ראון: כנראה שיש רק דרך אחת "לטפל" צמ"שרים והיא דרך המדידה המעשית. לוי: אני לא מתייאש, חייים למצוא דרך לחדור אל התחום החלומי ראון: יש לך איזו הצעה? לוי : עד עתה טיפלנו צירופי מידות שרירותיים שאנו קענו, כמו אורך מקל ואורך עיפרון, או קו שנחתך אופן סתמי, והיע הזמן לטפל צירופי מידות קיימים מעצמם, וניתן לכנותם "טעיים". ראון: איפה הם נמצאים "צירופי מידות טעיים"? אולי עליהם לא חל כלל צמ"שר? לוי: היאומטריה מלאה צירופי מידות טעיים ) קיצור צמ"טים) ראון: תן דומה אחת.

10 10 - יאומטריה עצרית לוי: נצן מרכזי, ממחיש כל צירוף מידות טעי שניתן להעלות על הדעת. ראון: מה זה נצן מרכזי? או מה זה סתם נצן? שמעון: נצן זה שם מוצע לצורה יאומטרית פשוטה מאוד הכוללת קו אופקי שהוא סיס הנצן ויסומן אות. מרכז הסיס ניצ לו קו הוה של הנצן, שיסומן אות יש אינסוף צורות של נצנים וציור הא מופיעות שלוש צורות. נצן על צורה ייחודית נצן על צורה ייחודית נצן על צורה ייחודית וצירוף מידות ייחודי - וצירוף מידות ייחודי - וצירוף מידות ייחודי - המני מספר יחס ייחודי המני מספר יחס ייחודי המני מספר יחס ייחודי הנוע ממדידת עלפי הנוע ממדידת עלפי הנוע ממדידת עלפי 1.42 // = // = כ // = כ ראון: הנצנים האלה מציים צירוף מידות שרירותי של ו לוי: נכון, עוד מעט יופיעו הנצנים המציים צירוף מידות טעי, אך לפני כן עלי להוסיף כמה פרטים. ראון: מה יש עוד? לוי: לכל נצן יש צורה אחרת של זווית חוד, כפי שמראה ציור הא. צורת זווית החוד מתלה, כאשר מחרים את קצה לקצות קווים ישרים הנמשכים ללא סוף ראון: אתה ם יכול לטעון כי לכל נצן יש ם שני משולשים ישרי זווית זהים לוי: נכון מספיק לצייר נצן טהור, ואנו כר יודעים כי יש לו זווית חוד ייחודית, ומשולש ישר זווית. ייחודי אשר ניציו הם, מחצית ו ראון: אתה מצי את צורת הנצן כצורה סיסית ופשוטה הקודמת לצורת הזווית ולצורת המשולש. לוי: צורת קו היא הפשוטה יותר, ואחריה אים צורת הנצן, צורת הזווית, וצורת המשולש. שמעון: אולי לא הרשתם אל יש לנו שפת צורות מדעית המשתמשת מספרי יחס. אפשר לזהות נצנים לפי צורתם,ום לפי מספר היחס שלהם. אם אצטרך לזהות נצן אשר // שלו = 1.4 אדע מה לעשות. לוי: מה תעשה?, ומרכזו אצייר קו ניצ אורך 14 מ"מ 20 מ"מ שמעון: אצייר סתם קו אופקי אורך נחר ציור זה יצר נצן על צורה ייחודית, אשר מספר היחס שלו קרו ל, 1.4 והוא // = אם אחר את נקודות הנצן הזה, אקל את צורת זווית החוד שלו, ואת צורת משולשיו ישרי הזווית ראון: מספר היחס // יוצר צורת נצן מסוימת. יכולת לצייר את הצורה הזו ם "דול" אם היית מצייר קו אופקי של 20 ס"מ, וקו ניצ מרכזו של 14 ס"מ היית מקל אותה צורה של נצן. שמעון: כך חרתי, אופן שרירותי, ם את צורת הנצן ום את המידה ה הוא יופיע מציאות.

11 11 - יאומטריה עצרית לוי: וזה הזמן להצי את הנצן, אשר אינו מאפשר חירה מלאה. נצן כזה מופיע תוך מעל, כאשר קצה נמצא מרכז המעל, וקצות על קו ההיקף של המעל, נצן כזה אפשר לחור את אורך, אל אין חירה לי אורך. נצן כזה אפשר לחור את אורך, אל אז אין חירה לי אורך לכן, נצן כזה מצי צירוף מידות טעי של - נצן כזה יכונה נצן מרכזי, כדי להדיש את הקשר שלו עם מעל. הנה לדומה נצן מרכזי על צורה ייחודית, צירוף מידות טעי ייחודי של ו, זווית חוד ייחודית, משולשים ישרי זווית ייחודיים, ומספר יחס // ייחודי ראון: אני מעריך כי מספר היחס // של הנצן המרכזי הזה הוא סיות 7 שמעון: הנצן הזה לא רחוק מהנצן הקיצוני, שו, = קוטר המעל, ומספר היחס // = אינסוף על צורה ייחודית, צמ"ט ייחודי, זווית חוד לוי: והנה עוד נצן מרכזי יחס ייחודי // = 2. תוצאה מדויקת זו נועת ומשולשים יחודיים,ומספר צלע ריוע החסום מעל מההחנה כי הוא כי נצן זה מני מספר יחס נוסף, הנוע החנה זו מיאה לידיעה (עליה נשען ), עלפי היקף המעל ה ממדידת אורך הקשת ק 0.25 וערכו המדויק מספר יחס זה יסומן ק//ה ק שמעון: אני רואה שיש הדל מהותי ין נצן, לנצן מרכזי המופיע תמיד תוך מעל.. נצן מצי צירוף מידות שרירותי של -, ויש ו מספר יחס יחיד והוא //. ואילו נצן מרכזי מצי צירוף מידות טעי של -, ויש לו שני מספרי יחס. מספר יחס נצני // ומספר יחס קשתי ק//ה. תוצאה זו הכרחית, כיוון שנצן מרכזי מצוייר תמיד תוך מעל, ומכאן מספר היחס הקשתי. עקות החנה זו יש לי הצעה. כדי להשי קלות את מספר היחס הקשתי של נצן מרכזי, נחלק את קו ההיקף של המעל שתוכו מצוייר הנצן המרכזי ל 512 קשתונים זהים, ואז אפשר יהיה לספור את כמות הקשתונים שעליהם נשען קו הסיס. מספירה זו ומ 512 יוש מספר היחס הקשתי ק//ה של הנצן המרכזי האמור. לוי: מה פתאום? 512 שמעון: קל לחלק מעל ל,2048,1024,512,256,128, 64, 32,16, 8, 4, 2 וכו' אם נחלק את ההיקף ל 2048 קשתונים, כמעט ולא נחין הם, לכן חלוקת 512 היא מתאימה לשימוש מעשי. לוי: הנצן על ק//ה =0.25 ו // = 2, אינו צריך את החלוקה שהצעת. ם ללא החלוקה אנו יודעים את מספרי היחס המדויקים, מכיוון שנצן זה נוע מתמונת ריוע מושלם החסום תוך מעל. שמעון: אתה צודק, זהו נצן מיוחד, אל איך נדע את מספר היחס הקשתי של "סתם נצן" המצוייר תוך מעל? מקרה זה החלוקה ל 512 היא למעשה סרל של קו עול, שאמת המידה שלו היא קשתון.

12 12 - יאומטריה עצרית הנה לדומה " סתם נצן מרכזי " והספירה מלה כי קשת ק מופיעים כ 70 קשתונים לכן מספר היחס הקשתי של הנצן המרכזי הזה הוא. ק//ה = כ 70//512 = ראון: טו שהוספת את האות כ, הרי זו תוצאה של מדידה מעשית עם סרל של קו עול. ק שמעון: ואת מספר היחס // נשי עם סרל של קו ישר = כ 30 מ"מ = כ 32 מ"מ לכן // = כ 0.93 לוי: אנחנו נדון נצנים רעיוניים ולא נצנים מעשיים הכרנו כר נצן רעיוני שנע מתמונה דמיונית של מעל מושלם החוסם ריוע מושלם, ואז קענו וודאות וללא מדידות את מספרי היחס שלו. והשאלה היא "איפה הנצן הרעיוני הא"? ראון: מעל מושלם החוסם משושה משוכלל מושלם, מני נצן רעיוני אשר סו צירוף המידות הטעי שלו - אינו ידוע. הנצן הרעיוני הזה מופיע ציור, מרכי יחיד של המשושה המשוכלל, והוא משולש משוכלל שווה צלעות.. כאן ידוע מדויק כי קשת ק מופיעים קשתונים, ולכן מספר היחס הקשתי ק//ה הוא אך לעומת זאת היחס // מצי שני נעלמים // = שני נעלמים סו צירוף המידות - לא ידוע הערך המספרי או המספרפרי של של היחס // אינו ידוע ק קשתונים קשת ק ק//ה = לוי: זהו דיוק נצן רעיוני, ואנו ננסה להשי את שני הנעלמים שלו, ללא מדידות עם סרלים. שמעון: ואני דירתי על נצנים מעשיים, ועל סרלים של קו עול וקו ישר. לוי: מה יש נצנים מעשיים שראוי לעסוק הם? שמעון: זווית היא מוש מעשי מאוד אצל מודדי קרקעות, והם מודדים זוויות לפי כמות הקשתונים המופיעה ין קרני הזווית. ראון הצי את מספר היחס הקשתי, שפירושו קשתונים המופיעים קשת ק, אל זוהי דיוק כמות הקשתונים המופיעה ין קרני הזווית של הנצן הזה. לוי: אז אפשר לתאר זווית על פי כמות הקשתונים ין קרניה, ולהיד זווית קשתונית 70 שמעון: החלט, אך ל נשכח כי זהו תיאור של זווית מרכזית שקודקודה מרכז מעל, אשר היקפו מחולק ל 512 קשתונים זווית קשתונית 70 מונת הקשר עם מעל שהיקפו מחולק ל 512 קשתונים לכן, ליד כל מספר קשתוני, אפשר לרשום את מספר היחס הנוע מ -- מספר קשתוני// 512 ראון: ומה עם סתם זווית המצויירת ללא מעל?

13 13 - יאומטריה עצרית שמעון: אפשר למדוד אותה אמצעות "שקף קשתוני 512" לוי: מה זה "שקף קשתוני"? 512 שמעון: "שקף קשתוני " 512 זהו שקף קשיח שעליו מצוייר קו היקף מעלי, המחולק ל 512 קשתונים זהים, ומודשת ו נקודת המרכז. כאשר מניחים את שקף קשתוני 512 על זווית מצויירת, כך שקודקוד הזווית מתלכד עם נקודת המרכז, אפשר לספור כמה קשתונים מופיעים ין קרני הזווית האמורה. עזרת שקף קשתוני 512 ניתן להיע לתוצאות האות 152 קשתונים (ק//ה= 512//152 = ( קשת' ק//ה = קשת' ק//ה = קשתונים (ק//ה = ( 256 קשתונים ) ק//ה = 0.5=512//256 ( מדידת זוויות מופיעה ממש מדידת קרקעות, אסטרונומיה, תעשיה, ויש מכשירים משוכללים המודדים זוויות, וכל הזוויות הן תמיד מרכזיות ואינן מנותקות מהמעל. ראון: המדידות של זוויות המשולש מאששות את הכלל הידוע לכולנו סכום הקשתונים של זוויות משולש הוא 256 סכום מספרי היחס ק//ה של זוויות המשולש הוא 0.5 לוי: ואני מקש לחזור אל הנצן הרעיוני שראון הצי, ולנסות לקוע את סוו. הנה, כך הצי ראון את הנצן הרעיוני. ראון: מעל מושלם החוסם משושה משוכלל מושלם, מני נצן רעיוני אשר סו צירוף המידות הטעי שלו - אינו ידוע. הנצן הרעיוני הזה מופיע ציור, מרכי יחיד של המשושה המשוכלל, והוא משולש משוכלל שווה צלעות.. כאן ידוע מדויק כי קשת ק מופיעים קשתונים, ולכן מספר היחס הקשתי ק//ה הוא אך לעומת זאת היחס // מצי שני נעלמים // = שני נעלמים סו צירוף המידות - לא ידוע הערך המספרי או המספרפרי של של היחס // אינו ידוע ק קשתונים קשת ק ק//ה =

14 14 - יאומטריה עצרית לוי: הנצן שראון מפנה אותנו אליו, יחד עם הזווית שלו, יכול להיתפס כמשולש משוכלל, אשר הוה שלו מחלקו לשני משולשים ישרי זווית. אורך הצלע והוה מהווים צירוף מידות טעי. שמעון: הצמ"ט צלע וה הוא לינו צמ"שר, כי מה אנו יודעים? שהצלע ארוכה מהוה וזה הכל. ואם הוא צמ"שר לעולם לא נדע מאיזה סו הוא. לוי: אל זהו צמ"ט עם רעיון תומך, והרעיון התומך הזה הוא משפט פיתורס שחל על משולשים ישרי זווית. רעיון תומך זה יכול להיא לידיעת מספר היחס צלע//וה, ואני משער שעזרתו ניתן יהיה לקוע ם את סו הצמ"ט צלע וה. ראון: מה אתה מציע לעשות? לוי: נחר את המשולש הימני, ונסמן אותו כדלהלן.. = + נסמן אורך יתר (ת) ושטח הריוע היתרי (תת), נסמן אורך ניצ דול () ושטח הריוע הניצי הדול ) ) נסמן אורך ניצ קטן (ק) ושטח ריוע ניצי קטן ) קק). לאחר הסימונים האלה אפשר להצי את הרעיון התומך קיצור נמרץ תת קק ריוע יתרי תת ריוע ניצי ת ק ריוע ניצי קק ראון : זה משפט פיתורס שטח הריוע היתרי = לסכום השטחים של הריועים הניציים לוי: נכון, משפט פיתורס הוא הרעיון התומך, והעתי אותו עזרת הסימונים תת = קק + שמעון: עכשיו כר יש לנו "צירוף מידות טעי של שטחים" כמו תת- והוא יצטרף אל "צירוף מידות טעי של אורכים או קווים " כמו ת- לוי: הצמ"טים השטחיים תת- קק-, והצמ"טים הקוויים ת- ק- סום אינו ידוע ואילו הצמ"ט השטחי תת-קק, והצמ"ט הקווי ת-ק סום ידוע והוא ) שי ( שמעון: נכון, קק מהווה מידת מקור משותפת שטחית, והיא משוצת 4 פעמים תת ראון: ק מהווה מידת מקור משותפת קווית, והיא מופיעה 2 פעמים ת לוי: התעלומה מתמקדת צמ"טים שסום אינו ידוע, ומשפט פיתורס אמור לפתור את התעלומה. ראון: זה מעניין, תאר את הפתרון פירוט. לוי: ציירתי התחלה את הריוע הניצי הקטן, ששטחו קק נתפס מעתה כמממ שטחית והיות שידעתי שאורך היתר כפול מאורך הניצ הקטן,ציירתי את הריוע הניצי היתרי, עם 4 קק

15 15 - יאומטריה עצרית ראון: ומה הלאה? מה עם הריוע הניצי הדול? לוי: לפי משפט פיתורס ידוע לנו ששטחו של הריוע הניצי הדול = 3 קק ראון: נכון = תת מינוס קק לוי: וכאן יש תעלומה ידוע לנו ששטח הריוע הניצי הדול = 3 קק, אל ם ידוע לנו שאי אפשר לשץ 3 ריועי קק מנה של ריוע. ריוע יתרי תת ריוע ניצי ת ק ריוע ניצי קק ראון: לשם מה דרוש לך השיוץ הזה? לוי: אם נצליח לשץ את הריוע הניצי הדול כמו שמשוץ הריוע היתרי, נוכל לקוע שהיתר והוה מהווים צמ"ט מסו ) שי ( ראון: אל אי אפשר לשץ 3 ריועים מנה של ריוע דול לוי: זאת התעלומה, וחייים לפתור אותה, הרי אנו יודעים ש = 3 קק ראון: אז מה עושים? יש לך רעיון? לוי: אני הולך להקטין את מידת המקור המשותפת השטחית קק ראון: איך? מה פירושה של הקטנה זו? לוי: עליך לדמות שהריוע הניצי הקטן משוץ מלואו 100 ריועים זעירים (ריו"זים) ראון: אין כל עיה דימוי הזה. אני מיט שטח הריועי קק, ואני רואה דמיוני שמשוצים ו 100 ריו"זים, ואפילו אני מחין כך, שלאורך הניצ ק מופיע טור של 10 ריו"זים. לוי: שיוץ כזה יצרנו מממ שטחית קטנה פי 100 מ קק, ומממ קווית קטנה פי 10 מ ק. מממ קווית זו מופיעה צלע הריו"ז ותסומן נ, ומממ שטחית זו מופיעה שטח הריו"ז, ותסומן ננ ראון: אנו פועלים תחום החלומי, ואפשר לרשום משוואות מושלמות עם הריו"ז האמור.. אורך ק = 10 נ שטח קק = 100 ננ אורך ת = 20 נ שטח תת = 400 ננ אורך =?????? שטח = 300 ננ לוי: ומה שנשאר עתה הוא לשץ 300 ריו"זים מנה של ריוע דול, ואז לספור " כמה ריו"זים מסודרים טור לאורך צלע הריוע" ספירה כזו מיעה את אורך על פי כמויות של נ, והיא תני את המשוואה החסרה אורך = מספר של נ. לאחר שנשי את המשוואה החסרה, נדע כי הצמ"טים ק- ו ת- הם מסו ) שי (. ראון: מדהים, ממש מדהים, משפט פיתורס הוא אמת רעיון תומך המאפשר ישה אל התחום החלומי, ועזרתו ניתן לזהות סו של צמ"ט.. שמעון: אתה מינים מה אתם עושים? לוי: אני מנסה להיע את אורך על פי כמויות של נ,לשם זיהוי הצמ"טים ק- ת- כסו ) שי (

16 ק יאומטריה עצרית שמעון: זו מדידה, מדידה, אתם פועלים תוך התחום החלומי, ומצעים מדידה ללא שימוש סרל. ראון: מה פתאום? שמעון: אמת המידה היא ריו"ז, וכמו שסרל סופרים (ממש) מילימטרים המסודרים טור אחד אחרי השני, כך אתם סופרים ) דמיון ( כמויות של אורכי נ של ריו"זים המסודרים טור אחד אחרי השני. לוי : לא שמתי ל לדמיון ין מדידה ממשית לתהליך הדמיוני של שיוץ ריו"זים וספירתם.. ראון: אני מסכים עם שמעון, שיוץ ריו"זים מנה של ריוע דול, וספירת טור הריועים לאורך הצלע - זו פירוש מדידת אורך הצלע על פי כמויות מצטרות של אורכי נ. שמעון: התהליך החלומי שלכם דומה לחלוטין למדידה מעשית, ואני מציע לכנותו "מדידה פיתורית" לוי: מדידה פיתורית מול מדידה סרלית? שמעון: דיוק כך, מדידה סרלית היא ממשית ונעשית עזרת סרל ואמת מידה של מ"מ, ומדידה פיתורית נעשית דמיון עם שיוץ ריו"זים מנה ריועי, וספירת טור הריו"זים המסודר לאורך צלע. ראון: מדידה פיתורית מוססת על משפט פיתורס לוי: דיוק כך, זה הרעיון התומך לצמ"ט המופיע משולש שווה צלעות שמעון: אל היה ם נתון תומך, והוא ת = ראון: אכן, לי הנתון התומך הזה, אי אפשר היה לצע מדידה פיתורית. לוי: וכן, עוד לא השלמנו את המדידה הפיתורית, מכיוון שעוד לא שיצנו 300 ריו"זים מנה של ריוע דול, ועוד לא ספרנו כמה מהם מסודרים טור לאורך צלעו. ראון: אני מפעיל את הדמיון ומשתדל לסדר 300 ריו"זים מנה של ריוע, ולא מצליח. שמעון: וודאי שאינך מצליח, הרי המספר 300 לא נמצא טור המספרים הא, המצי כמויות כאלה של ריו"זים, - שרק מהם - ניתן ליצור ריועים דולים וכן הלאה ) 300 לא נמצא טור זה ( ראון : מעניין, 289 ריו"זים ניתנים לשיוץ ריועי,ולאורך צלעו יופיע טור של 17 ריו"זים 324 ריו"זים ניתנים לשיוץ ריועי, ולאורך צלעו יופיע טור של 18 ריו"זים, ואילו 300 ריו"זים, כלל לא ניתנים לשיוץ ריועי. לוי: מה הולך פה? תת דול פי 4 מ קק ותמיד ניתן לשצו, ואילו דול פי 3 ותמיד אי אפשר לשצו? ראון: כנראה שכך הוא, ולכן המדידה הפיתורית לא מסולת למדוד את אורך על פי כמויות נ. לוי: אם נשץ את קק 49 ריו"זים, נצליח לשץ את תת 196 ריו"זים כיוון ששטחו דול פי 4 ולעומת זאת לא נצליח לשץ את 147 ריו"זים. שמעון: ם המספר 147 לא מופיע טור המספרים של שיוץ ריועי. לוי: אכן אכזה,עכשיו אני יודע שם חירת ריו"ז זעיר מאוד,שמליון כמוהו משוצים קק ו 4 מליון כמוהו משוצים תת,ניע למצ המוזר שו אי אפשר לשץ 3 מליון ריו"זים מנה ריועי. ראון: וכן מה עוזר הרעיון התומך שהצת? הרי אין כל אפשרות לצע מדידה פיתורית של אורך. לוי: זה מה שאמרתי, אכן אכזה. ראון: האם אתה טוח כי המדידה הפיתורית של אורך תמיד תיכשל? לוי: ככה זה נראה, אף פעם אי אפשר לשץ את ההפרש (כמות ריו"זים של תת מינוס ריועי, ולכן אי אפשר לספור טור של ריו"זים לאורך הצלע. קק ( מנה

17 17 - יאומטריה עצרית שמעון: כדאי לדוק יסודיות את כל נושא השיוצים, ואני מצייר את ההתחלה של השיוצים האפשריים ראון: שורת הכמויות של ריו"זים שיוץ ריועי ידועה, והיא מתחילה כך וכן הלאה וכן הלאה שמעון: חלק מהכמויות הן כפולות של 4 לי חלק זה, שורת הכמויות תראה כך וכן הלאה ועכשיו,יש עוד חלק הניכר מכפלה של וכן הלאה לי חלק זה, שורת הכמויות תראה עכשיו כך וכן הלאה ועכשיו יש עוד חלק הניכר מכפלה של וכן הלאה לי חלק זה, שורת הכמויות תראה כר כך וכן הלאה ועכשיו יש עוד חלק הניכר מכפלה של וכן הלאה ראון: כנראה זה סימן היכר כללי - המכפלה 4 שמעון: אני מזהה את "המספרים החלוציים" וכן הלאה שמהם נועים כל אפשרויות השיוץ, על פי מכפלות של 4 לוי: "המספרים החלוציים" הם כל המספרים האי זויים חזקת 2 ראון: עכשיו אני מין מדוע תמיד אפשר לשץ את תת, ותמיד אי אפשר יהיה לשץ את שמעון : תת דול פי 4 מ קק, ואילו דול פי 3 מ קק. ראון: אז מה יהיה אם נתונים לנו שני ריועים, ) B ( A ששטח B דול פי 3 משטח? A שמעון: אם נחר ריו"ז המשץ את שטח, A הוא לא יתאים לשץ את שטח B אם נחר ריו"ז המשץ את שטח, B הוא לא יתאים לשץ את שטח A. לוי: הרי זה דיוק המצ שאנו דנים ו, שטח דול פי 3 משטח קק שמעון: לכן ניתן לקוע ללא היסוס, כי לצמ"ט השטחי קק- אין מממ שטחית,והכרח ם לא תהיה מממ שטחית לצמ"ט תת-, והכרח לא תהיה מממ קווית לצמ"טים הקוויים ק- ו ת- לוי: מה? אתה מתרם את הכישלון שיוץ ריו"זים להצלחה זהוי סו של צמ"טים? שמעון: כן, הרי זה ממש מתקש, " הכישלון שיוץ ריו"זים מנה ריועי" מזהה צמ"ט מסו (אין) ריוע יתרי ריוע ניצי ת ק ריוע ניצי לוי: יפה מאוד, הפכת כישלון להצלחה.

18 18 - יאומטריה עצרית ראון: ההצלחה זיהוי סו צמ"ט היאה אותנו למצ משונה, שו חסרה לנו משוואה קיימת המשוואה ק = 10 נ, קיימת המשוואה ת = 20 נ ומה נרשום עם? = מה? שמעון: אין מה לרשום, הריו"ז על צלע נ ושטח ננ מתאים ליצירת הריוע הניצי הקטן, מתאים ליצירת הריוע היתרי, אל הריו"ז הזה לא מתאים ליצירת הריוע הניצי הדול. לוי: אז מה נרשום? = מה? הרי ל יש אורך? שמעון: אל לאורך ולאורכי ק ו ת אין מידת מקור משותפת, לכן אי אפשר להיע את אורך על פי כמות של אורכי נ, ומכאן נועת ההכרה כי לא קיימת משוואה כזו =???? נ לוי: חייים למצוא פתרון שנותן יטוי כמותי לאורך שמעון: אפשר לרשום שאורך דול מ 17 נ, וקטן מ 18 נ, כאשר נדיש כי את האורך האמיתי של אי אפשר להיע אמצעות מספר של נ לוי: וכן מה נרשום? אורך ק = 10 נ, אורך ת = 20 נ, ואורך = (8)17 נ שמעון: כן, הרי מתקש להשתמש מספרפר (8)17 ראון: מספרפר של מדידה ממשית צריך להיות מספר לא ידוע (תוך התחום) המיע אורך אמיתי. שמעון: עכשיו אנו יודעים כי מספרפר של מדידה ממשית, יתכן ויש מספר המיע את האורך האמיתי, ויתכן שאין מספר המסול להיע את האורך האמיתי,(תלוי אם לסרל ולאורך הנמדד יש או אין מממ-ח) אך מספרפר של מדידה פיתורית שנכשלה טוח "שאין מספר" תוך התחום המיע את האורך האמיתי.. ראון: וכן עלינו להדיל ין מספרפר המצי תוצאה של מדידה פיתורית שנכשלה שיוץ ריועי של ריו"זים, לין מספרפר המצי תוצאה של מדידה ממשית. שמעון: כר הדלנו - מספרפר של מדידה ממשית, לא נדע אם יש מספר או יש אינמספר ואילו מספרפר של מדידה פיתורית שנכשלה, אנו יודעים וודאות שיש אינמספר. לוי: מה זה? נתת לאינמספר קיום כמו מספר שמעון: רק מכיוון שלמספר יש "מקום מתמטי" ום לאינמספר יש "מקום מתמטי". ראון: כלומר, המקום המתמטי של אינמספר השייך לאורך, הוא דול מ 17 וקטן מ 18 שמעון: זה ניסוח מון, כמו מקום מתמטי של מספר. 18 לוי: צריך להתרל למוש הזה " מקום מתמטי של אינמספר" שמעון: כל מספרפר מצי מקום מתמטי (דול מ וקטן מ ( עם תחום צר או רח ראון: המספרפר (8)17 מצי תחום רח מידי, וכדאי לצמצמו. יש המון "אינמספרים " ין 17 ל לוי: לשם כך צריך לשפר את המדידה הפיתורית, ולהשתמש ריו"ז זעיר מאוד. שמעון: נקטין עוד את אמת המידה השטחית, ונשץ שטח הריוע הניצי הקטן מליון ריו"זים. ראון: זה ריו"ז ממש זעיר, שאורך צלעו (י) קטן פי 100 מאורך הצלע של הריו"ז שאורך צלעו (נ). לוי: נדמה ריו"זים כאלה משוצים ריוע הניצי הקטן,ו 1000 מופיעים טור לאורך ק. המשך נדמה ריו"זים משוצים ריוע היתרי, ו 2000 מופיעים טור לאורך ת. כך קילנו את המשוואה ק = 1000 י ואת המשוואה ת = 2000 י, עתה נשאר לשץ דמיון את ההפרש של ריו"זים ריוע הניצי הדול, ולספור את כמות הריו"זים המופיעים טור לאורך., ולקל את המשוואה.. = כמות של י ראון: אל אנחנו כר יודעים ש ריו"זים לא ניתנים לשיוץ ריועי שמעון: שיוץ ריועי של ריו"זים יופיע טור של 1732 ריו"זים לאורך הצלע.

19 19 - יאומטריה עצרית לוי: ושיוץ ריועי של ריו"זים יופיע טור של 1733 ריו"זים לאורך הצלע. מנתונים אלה נוע המקום המתמטי של אינמספר המשקף את אורך והוא נמצא תוך המספרפר הזה, (3)1732, הנוע ממדידה פיתורית שנכשלה. ת = 2000 י = (3)1732 י ק = 1000 י עקות השת הוה, ניתן לקוע את מספרפר היחס הנוע ממדידת סיס המשולש עלפי והו סיס // וה = =1732(3)// (7) כך הענו אל הנצן הרעיוני המרכזי שראון הציע לטפל ו, שהוא מצי צירוף מידות טעי. שמעון: וכן, ם קענו את סו הצמ"ט -, ום את מספרפר היחס שהוא מצי. // (3)1.732 לוי: שני הנעלמים הושו, עזרת מדידה פיתורית הנערכת תחום החלומי.. ראון : אכן, המדידה הפיתורית היא מדידה מדויקת מופלאה המתרחשת תחום החלומי לוי: שנים רות אני מכיר את משפט פיתורס, ולא ידעתי כי קיימת מדידה פיתורית. ראון: ואני לא ידעתי כי זוהי מדידה חלומית מדויקת הנערכת דמיון. לוי: ואני לא ידעתי כי מדידה פיתורית שנכשלה,מסולת לקוע את סוו של צמ"ט. ראון: הנצן המפורסם של ק//ה = 0.25 ו // = 2, יחד עם הזווית שלו אשר ין קרניה מופיעים 128 קשתונים,, יכול להיתפס כמשולש ישר זווית ושווה ניצים. ם על משולש זה ניתן להפעיל מדידה פיתורית, שתני שני הישים. אנו נלה כי היתר והניצ מהווים צמ"ט מסו (אין), ומדידת היתר עלפי הניצ תני את מספרפר היחס (2) , שתוכו אינמספר. נצן זה מצי צירוף מידות טעי של - שסוו ידוע מראש, והוא סו ) שי ( 2 // = 0.25 ק//ה = ק 128 קשתונים הנצן המיוחד הוא אחד מאינסוף נצנים מרכזיים, וניתן "לראות את כולם " ניסוי דינמי דמיוני. ניסוי דינמי זה ישתנה מאפס עד לאורך הקוטר ומקיל ישתנה מאורך רדיוס עד אפס ומקיל מספר היחס הנצני // ישתנה מאפס עד אינסוף ומקיל ק ישתנה מאפס עד לאורך מחצית ההיקף ומקיל, כמות הקשתונים ין קרני הזווית תשתנה ין אפס ל 256 ומקיל מספר היחס הקשתי ק//ה ישתנה מאפס עד 0.5

20 20 - יאומטריה עצרית ראון: התוצאה של הניסוי הדמיוני הזה היא מוונת. יש ה אינסוף צורות של נצנים, אינסוף צורות של זוויות, אינסוף צורות של משולשים ישרי זווית, אינסוף צירופי מידות טעיים,ושתי שורות אינסופיות של מספרי יחס לא ידועים העומדים זה מול זה, ורק שני זוות של מספרי יחס הם ידועים.. מספר יחס קשתי ק//ה אפס?????? 0.166?????? 0.25??????????????????? 0.5 מספר יחס נצני // אפס?????? (7)1.1540????? 2???????????????????? אינסוף ראון: מספרי היחס הידועים שייכים לנצנים רעיוניים שנעו ממעל מושלם החוסם ריוע מושלם, וממעל מושלם החוסם משושה מושלם. לוי: איך ניע אל אינסוף זוות מספרי היחס שעוד חסרים? ראון: מה כל כך מעניין רשימת אינסוף זוות של מספרי יחס לוי: זה מעניין, איך לכל מספר יחס קשתי ין אפס ל 0.5 "מתאים" מספר יחס נצני ין אפס לאינסוף. ראון: כריל, התחום הרעיוני מעניין את לוי. שמעון: לפעמים יש ערך מעשי להתאמה ין זווית קשתונית למספר יחס נצני הזווית היא מוש שימושי מאוד, ואך טעי לשאול מהו מספר היחס // של זווית קשתונית מסוימת.. מחינה מעשית אפשר לתת לזווית מעמד כורה,ומקום שניד הזווית של הנצן, ניד הנצן של הזווית ראון: נראה לי שעדיף להשתמש כמות קשתונים ין קרני זווית, מאשר מספר יחס קשתי. לוי: מה זה משנה? הרי כמות קשתונים ין קרני זווית// = 512 מספר יחס קשתי שמעון: אז נוסיף עוד שורת מספרים (של כמות קשתונים) לשורות מספרי היחס. שורה ראשונה - קש = מספר קשתונים ין קרני זווית שורה שניה - ק//ה = מספר יחס קשתי שורה שלישית - // = מספר יחס נצני את שלושת השורות נכנה קיצור שורות "קשקה" הנה הם שורות קשקה האינסופיות, ויש הן רק שתי התאמות, והן מסומנות חיצים. 256???????????????????????????? ????????????????????????????? 0.25 אינסוף???????????????????????????? 2????? ??????????? 0.166??????????? (7)?????? קש אפס ק//ה אפס // אפס לוי: ואיך נשי עוד התאמות? אולי נחסום מחומש משוכלל מעל, ונשתמש מרכי שלו? שמעון: ציור הא מופיע המרכי של מחומש משוכלל החסום מעל, ואין לנו כל נתון תומך למשולש ישר זווית זה. מרכי של המשושה המשוכלל היה נתון תומך והוא ניצ קטן = מחצית יתר, מרכי של הריוע היה נתון תומך והוא ניצ = ניצ, ומרכי של המחומש אין לנו נתון תומך עודה זו מונעת את הפעלת משפט פיתורס, ולכן אין אפשרות להשי את שני הנעלמים של // // = 0.2 ק//ה = ק קשתונים שני נעלמים, סו וערך מספרי/רי שמעון: אולי נדוק את המחומש המשוכלל כולו, אולי נמצא ו משהו.

21 21 - יאומטריה עצרית ראון : הנה הוא מחומש משוכלל, וחירנו את פינותיו קווים ישרים. זווית ין כל שתי צלעות מופיעים קשתונים. ד ה ו ז ח ט י א לוי: קילנו מחומש קטן (הפוך ( תוך המחומש המקורי. שמעון: קילנו משולשים שווה שוקיים משני סוים. סו צר שהם השוקיים ארוכות מהסיס, וסו רח שהם הסיס ארוך מהשוקיים. לוי: משולשי הסו הצר מופיעים שלוש מידות, (דול - א ד), (ינוני אטה), (קטן חטא) ואילו משולשי הסו הרח מופיעים שתי מידות, (דול אדה), (קטן אט) זווית החוד של המשולש הצר מופיעים 51.2 קשתונים, וזווית החוד של המשולש הרח לוי:: אני מיט משולשי סו צר, ומחין שלכולם יש אותה צורה. אני מיט משולשי סו רח, ומחין שלכולם יש אותה צורה, אל זו אינה הצורה הקודמת. ראון: עלינו לקוע מחן אוייקטיי לצורה זהה של משולשים שווה שוקיים קטנים ודולים. שמעון: המחן הוא פשוט מאוד וכולל שני תנאים: א: שקווי הצלעות שלהם יהיו ישרים לכל אורכם : שזווית החוד שלהם תהיה אותה זווית דיוק. אם נצא מתוך הנחה שרק קווים ישרים מופיעים ציור הזה, נשאר תנאי יחיד הקוע את הצורה הזהה של משולשים שווה שוקיים דולים וקטנים, והוא זווית החוד. אם לקוצת משולשים שווה שוקיים יש אותה זווית חוד, אז יש לכולם אותה צורה,והם יקראו דומים. ראון: על פי תנאי הדמיון הזה, לכל המשולשים הצרים יש אותה צורה והם דומים זה לזה וכמון, לכל המשולשים הרחים יש צורה זהה (אחרת), והם דומים זה לזה. לוי: קילנו ידיעות רות מחיור פינות המחומש קווים ישרים, וולת הכותרת שלהן היא הידיעה על קיומו של כלל המחר ין יאומטריה ומתמטיקה, ואני מציע לכנותו שם "הכלל היאומטי"" הכלל היאומטי יחר ין צורת זווית שזה מוש יאומטרי, למספר יחס הנוע ממנה, וזה מוש מתמטי. זווית החוד של משולש שווה שוקיים קועת את צורתו הייחודית והיא ם קועת מספר יחס ייחודי, הנוע ממדידת אורך שוק עלפי אורך סיס. אם כלל זה מקול עליכם, אפשר לרשום משוואה של מספרי יחס. ד-א//א- = היות ו ד-ח = א- ו ח-ה = ח-א,אפשר לרשום ם כך את המשוואה ד-א//ד-ח = ד-ח//ח-ה ד-ח//ח-א השיקוף היאומטרי של הרישום החדש מופיע קטע שאורכו ד-א המחולק לשני קטעים ד-ח ו ח-א א ד ח ממשוואת היחסים נוע כי ממדידת ד-א עלפי ד-ח,או ממדידת ד-ח עלפי ח-א נקל אותו מספר יחס. אם נצליח למצוא את מספר היחס הזה, השנו נתון תומך לשוק ולסיס של משולש שווה שוקיים המופיע תוך המחומש המשוכלל, ועקותיו יופיע נתון תומך למשולש ישר זווית שתוך המחומש. ראון: טו מאוד, הרי זה מה שאנחנו מחפשים., נתון תומך למשולש ישר זווית חדש.

22 22 - יאומטריה עצרית לוי : הענו לתיאור פשוט יותר של משוואת היחסים קטע שאורכו א מחולק לשני קטעים, וקטן, ואלה מציים משוואת יחסים פשוטה מאוד א// = // דול א ראון: החיתוך הזה של קטע א מקום המסוים הזה, המני את משוואת היחסים הזו, נקרא חיתוך הזה לוי: וחיתוך הזה צריך להני מספר נעלם או מספרפר נעלם, ואותו אנו מחפשים. ראון: וכן איך נלה את המספר / מספרפר של חיתוך הזה? שמעון: מדידה, כריל, אך זו לא תהיה מדידה עם סרל ממשי, אלא מדידה עם סרל דמיוני חלקים שווים, ונעריך לפי הציור כמה חלקים יש אורך של ראשון נחלק את אורך א ל (נניח ( 700 אלה יהיו נתוני ההתחלה של הטלה האה, ולאחר מכן יופיעו תיקונים, על פי המטרה ו // יניו אותו מספר או מספרפר. שהיחסים א// מדידת מדידת עלפי א עלפי א התחלה תיקון תיקון תיקון תיקון (8) (2) תיקון לוי: איזו מין מדידה זו? זו אינה מדידה פיתורית, וזו אינה מדידה סרלית ממשית. שמעון: זו מדידה עם סרל דמיוני, המתאפשרת על יסוד השאיפה להשת אותו מספר יחס ראון: אנו לא מצליחים להיע לאותו מספר, מתקרים אך לא מיעים. לוי: אז אולי נמשיך למדוד ונראה לאן ניע מדידת מדידת על פי א על פי א (8) > (2) תיקון (1) < (5) תיקון (1) > (2) תיקון, ופעם א// קטן מ // פעם א// דול מ // ראון: התוצאה תמיד מתנדנדת, לוי: אולי התוצאה מתנדנדת סי אינמספר? שמעון: אולי? לוי: אז ואו ונמשיך למדוד עם הסרל הדמיוני, אולי פתאום יפסקו הנדנודים ויופיע מספר? שמעון: כנראה שאף פעם לא ניע למצ של שוויון ין א// ל // לוי: אם תמיד נקל אי שוויון יו א// ל // עם תוצאה מתנדנדת, זה יהיה הסימן לצמט" סו (אין) ראון: זהו ניחוש.. לוי: ואולי ידיעה טעית? ראון: הכישלון שיוץ ריו"זים מנה ריועי, היא להחנה צמט" מסו (אין) והכישלון השת שוויון מושלם יחסים מדידה עם סרל דמיוני, מיא לאותה החנה? שמעון: לוי: אני משער שכן ראון: אני מוכן לאמץ את ההשערה הזו. אם התוצאה מתנדנדת סי "אינמספר" הצמט" - הוא מסו (אין) שמעון: זוהי "השערת הנדנדה" לוי: חיתוך הזה יוצר צמ"ט מסו (אין), והוא מני את מספרפר היחס (1)1.6180

23 ש// 23 - יאומטריה עצרית ראון: וכן לאן הענו? ד ה ו ז ח ט י א לוי: ראש וראשונה הענו אל הכלל, המחר ין היאומטריה (צורה) למתמטיקה.(מספר יחס) הכלל היאומטי זווית החוד של משולש שווה שוקיים קועת את צורתו הייחודית והיא ם קועת מספר יחס ייחודי, הנוע ממדידת אורך שוק עלפי אורך סיס. הכלל הזה איפשר להצי משוואת יחסים הנועת מתוך המחומש המשוכלל, ועקותיה הוש מספר היחס המפורסם (1)1.6180, עזרת מדידה עם סרל דמיוני ולא סרל ממשי קשתונים מספר יחס זה תקף לי שני משולשים שווה שוקיים. שהנצנים שלהם יכולים להיות נצנים מרכזיים. קשתונים ש ש = (1) מוש מדידה פיתורית // = כ 2.75 ק//ה = 0.3 ש// = (1) מוש מדידה פיתורית // = כ ק//ה = 0.1 ועתה אפשר להכניס עוד שתי התאמות לשורות קשקה, הנועות ממחומש משוכלל 256???????????? 0.5???????????? אינסוף??????? ??? 128?? 0.25??? 2????? ?????? 0.166????? (7)??? 51.2??????? 0.1?????? 0.649????? קש אפס ק//ה אפס // אפס התאמה ממרכי של משושה משוכלל התאמה ממרכי של ריוע, שהוא מרוע משוכלל שמעון: החיפוש שלנו אחרי התאמות הוא חסר סיכוי, השנו 4 התאמות מתוך אינסוף. ראון: חייים למצוא שיטה המניה התאמות ללא סוף לוי: אני טוח שקיימת שיטה כזו שמעון: אם היא קיימת, היא חמקמקה מאוד, אחרת היינו תופסים אותה. לוי: יש לי רעיון, ופלא שהוא עלה רק עכשיו.

24 ה/ 24 - יאומטריה עצרית שמעון: דר ונשמע לוי: נצן אשר שני מספרי היחס שלו ידועים, הוא נצן מוצא למשפחה אינסופית של נצנים ראון: מה פירוש נצן מוצא למשפחה אינסופית של נצנים? לוי: הנצן על מספרי היחס ק/ = // = (7) יחד עם הזווית שלו אשר ין קרניה מופיעים קשתונים,, יוצרים משולש משולש שווה צלעות קשתונים // = (7) ת= 2 = (3)1.732 ק//ה = כדי שנצן זה יהפך לנצן מוצא למשפחת נצנים, נאריך את עד לאורך ת. לאחר מכן נחר את קצות ו ת ונקל סיס של נצן חדש, שזווית שלו יופיעו קשתונים. זווית זו תהיה שייכת לנצן החדש, שיהיו לו שני מספרי יחס חדשים. מין אלה ק//ה ידוע והוא הארכת והסיס החדש מופיעים ציור הא קשתונים ת= 2 = (3) (8) 1 הארכה 1 סיס נצן חדש ומרכזו יהא ניצ וה חדש את סיס הנצן החדש ניתן להשי מדידה פיתורית וערכו (6)1.035 ם את הוה החדש ) לא מופיע ציור ( ניתן להשי מדידה פיתורית וערכו (8) מנתונים אלו יהא נוע מספר יחס נצני חדש - סיס חדש//וה חדש = (8) אשר מספר היחס הקשתי שלו ק//ה הוא ראון: אכן השיטה פשוטה, והשת נצן חדש ששני מספרי היחס שלו ידועים, והם מניים את מספר היחס הנצני (8) קשתונים // חדש = (8) ק//ה חדש = ת= 2 לוי: השה זו היא התאמה נוספת שאפשר להכניס אותה לשורות קשקה מקום ההתאמה הזו הוא כאן 256???????? 0.5????????? אינסוף????? ??? 128????? ?? 0.25?????? 0.166??? 2????? (7) ????????? קש אפס ק//ה אפס // אפס

25 25 - יאומטריה עצרית ראון: עד עתה השת נצן ראשון ממשפחת נצנים, השייכת לנצן מוצא נחר. לוי: על תהליך ההשה אפשר לחזור, ולהאריך את הוה החדש עד לאורך ת, כך שיתקל משולש שווה שוקיים חדש שזווית החוד שלו יופיעו קשתונים. זווית זו תהיה שייכת לנצן חדש אשר יהיו לו שני מספרי יחס חדשים. מין אלה ק//ה כר ידוע והוא מחצית מ = קשתונים קשתונים ת= 2 הארכת + יצירת סיס חדש ומרכזו ניצ וה חדש. את אורך הסיס החדש והוה החדש ניתן ללות מדידה פיתורית, ומהם נקל את מספר היחס הנצני // = כ והתוצאה התאמה חדשה שניתן להכניסה לשורות קשקה מקום ההתאמה הזו הוא כאן 256??? ??? 0.3?? 2.75 אינסוף??? 128????? ?? 0.25?????? ??? 2????? (7) ?????????? קש אפס ק//ה אפס // אפס ראון: עד עתה השת נצן שני משפחת נצנים של נצן מוצא נחר. לוי: אם נחזור על התהליך ניע אל נצן על ק//ה ו // כ שזווית של יש קשתונים. נתונים אלה מהווים עוד התאמה שניתן להכניסה לשורות קשקה. שמעון: אכן הצת תהליך פשוט שיכול להשי אינסוף התאמות לשורות קשקה, וכולן נועות מנצן מוצא, המצי את ההתאמה קש = ק//ה= // =(7) ראון: צריך לתת שם לתהליך הזה המלה התאמות לשורות קשקה ללא הלה. אני חוש שהשם המתאים הוא "תהליך חציוני" מכיוון שמספר היחס הקשתי ק//ה שמיעים אליו, הוא תמיד מחצית מקודמו, או מספר קש הוא תמיד מחצית מקודמו. שמעון: התהליך החציוני שהתחיל מנצן מוצא על זווית קשתונית, מני התאמות רות רק תחום הזוויות הזעירות.. התהליך החציוני הוא על ממה כיוונית רורה לכיוון אפס. התחלנו קש = והמשכנו כך , , , , ואפשר עוד להמשיך ללא סוף ל קש=, ל, ל וכן הלאה ראון: נשארו לנו עוד שלושה נצני מוצא, והן עלי זוויות קשתוניות 51.2, 128, שמעון: ם על נצני מוצא אלה ניתן להפעיל תהליך חציוני, ושו פעם נקל התאמות רות תחום הזוויות הזעירות,זוהי תוצאה הכרחית הנועת מטעו של התהליך החציוני. אם נתחיל קש = ונמשיך ל 76.8 ל 38.4 ל 19.2 ל 9.6 קשתונים וכן הלאה. ואם נתחיל קש 128 נמשיך ל 64 ל 32 ל 16 ל 8 ל 4 ל 2 ל 1 ל 0.5 וכן הלאה ואם נתחיל קש 51.2 נמשיך ל 25.6 ל 12.8 ל 6.4 ל 3.2 ל 1.6 ל 0.8 וכן הלאה לוי: ואו ונחר עוד נצן מוצא, ונפעיל עליו תהליך חציוני..

<4D F736F F D20EEE4F4EA20EEE0E420F9ECE5F9E9ED20E5F9E1F22E646F63>

<4D F736F F D20EEE4F4EA20EEE0E420F9ECE5F9E9ED20E5F9E1F22E646F63> 1 ----- ואלה עיקריו של המהפך במתמטיקה - 1 הוא המספר האי רציונלי היחידי, וכל שאר המספרים הם רציונליים. בפיסיקה - מסלולי התנועה הטבעיים של כוכבים, הם מסלולים בורגיים. בגיאומטריה - פאי משתנה ואינו קבוע. המהפך

קרא עוד

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63> 1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $

קרא עוד

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים

קרא עוד

עב 001 ינואר 12 מועד חורף פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית

קרא עוד

Microsoft Word - solutions.doc

Microsoft Word - solutions.doc תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה

קרא עוד

rizufim answers

rizufim answers ÌÈÙÂˆÈ מדריך למורה פעילות זו היא פעילות חקר לבדיקת כל אפשרויות הריצוף שבהן סידור מצולעים סביב קודקוד הוא זהה. המצולעים שבהם ישתמשו התלמידים הם: משולש שווה צלעות, משושה משוכלל וריבוע - כולם בעלי צלע באותו

קרא עוד

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63> הסברים לפרק כמותי : :úåðåëðä úåáåùúä 0 9 8 7 6 5 5 0 9 8 7 6 5. התשובה הנכונה היא: (). עלינו לקבוע איזה מהביטויים שבתשובות אינו זוגי. משום שהשאלה עוסקת בתכונת הזוגיות, ננסה ללמוד מהנתון על זוגיותם של x

קרא עוד

סז 002 נואר 07 מועד חורף פתרונות עפר

סז 002 נואר 07 מועד חורף פתרונות עפר הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות

קרא עוד

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y

קרא עוד

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשעט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי  שכונה מערבית, רח' הפסגה 17 כרמיאל דואל: עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30

קרא עוד

HaredimZ2.indb

HaredimZ2.indb יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

קרא עוד

האקדמית ת"א-יפו - שוק ההון בישראל – מועד א'

האקדמית תא-יפו - שוק ההון בישראל – מועד א' ישרל ההון שוק - ת"-יפו הקמית ' מוע המכללההקמיתת"-יפו 03.30.3310 תריך: ' מוע - ישרל ההון שוק קורס: חינה קופמן י המרצה: שם כלכלה המחלקה: שם וחצי שעה החינה: משך מחשון עזר: חומר חסויה חינה שוקההוןישרל מחןמסכם

קרא עוד

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63> משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת

קרא עוד

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 סמ, כמו כן אחת מצלעות המקבילית שווה ל- 8 סמ. מהו גודלה של שאר צלעות המקבילית בסמ?.1 8 נתונה תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה מקבילית שצלעותיה שוות ל- 3 ס"מ ול- 7 ס"מ. מהו הטווח

קרא עוד

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

ע 003 מרץ 10 מועד מיוחד פתרונות עפר בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר

קרא עוד

Microsoft Word - dvar hamaarehet_4.8.docx

Microsoft Word - dvar hamaarehet_4.8.docx מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם

קרא עוד

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה יש לפתור את כל השאלות עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו

קרא עוד

Microsoft Word - exam-6.doc

Microsoft Word - exam-6.doc מכלל קמית ליל מערי סמסטר ' תשס"ז מוע ' תריך חינ: 16.3.7 שע 8:3 משך חינ: שעתיים וחצי חומר עזר מותר: מחשון ל מספר שלון: מחן קורס: מו לכלכל מיקרו שמות מרצים: "ר ניסים ן ו ו"ר עמית ייר נחיות מחן מורכ מ- 2

קרא עוד

Microsoft Word - אלגברה מעורב 2.doc

Microsoft Word - אלגברה מעורב 2.doc תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz

קרא עוד

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63> < 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.

קרא עוד

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

קרא עוד

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יחל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא

קרא עוד

Microsoft Word - hedva 806-pitronot-2011.doc

Microsoft Word - hedva 806-pitronot-2011.doc ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

<4D F736F F D20F4E9E6E9F7E420FAF8E2E5ED20ECF2E1F8E9FA20E4E2E4E420F1E5F4E9FA20496C616E2E646F63>

<4D F736F F D20F4E9E6E9F7E420FAF8E2E5ED20ECF2E1F8E9FA20E4E2E4E420F1E5F4E9FA20496C616E2E646F63> מתקף ותנע מבוא תרשים 1 כשמפעילים מתקף על גוף כלשהו, התנע שלו משתנה. שינוי התנע שווה למתקף, שהוא השטח מתחת לגרף הכוח כתלות בזמן: Δp = F dt 51 m v m v1 = dt 2 F כאשר F הוא הכוח המופעל על הגוף, p הוא השינוי

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה - פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים

קרא עוד

תרגיל 5-1

תרגיל 5-1 תרגיל 1 יחסי העדפה, פונקציות תועלת, עקומות אדישות וקווי תקציב כל השאלות להלן מתייחסות לצרכן שהעדפותיו מוגדרות על סלי צריכה של שני מוצרים. העדפות אלה הן רציונאליות (ז"א, מקיימות את תכונות השלמות והטרנזיטיביות).

קרא עוד

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים כיתה

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים   כיתה שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים www.kefwithjeff.org כיתה Happy New Year 8 0 80 80 0 8 8 8 8 8 08 8 0 0 בכל שורה ובכל טור יש את המספרים עד כולל.

קרא עוד

Microsoft Word - 38

Microsoft Word - 38 08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60

קרא עוד

שיעור מס' 6 – סבולות ואפיצויות

שיעור מס' 6 – סבולות ואפיצויות שיעור מס' 6 סבולות ואפיצויות Tolerances & Fits Tolerances חלק א' - סבולות: כידוע, אין מידות בדיוק מוחלט. כאשר אנו נותנים ליצרן חלק לייצר ונותנים לו מידה כלשהי עלינו להוסיף את תחום הטעות המותרת לכל מידה

קרא עוד

1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם

1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם 1 מבחן משווה בפיסיקה כיתה ז' משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל 4 שאלות עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר: 1.מחשבון. נספח הנוסחאות

קרא עוד

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C 8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות

קרא עוד

Microsoft Word פרק 16 - פתרון משוואות רמה א

Microsoft Word פרק 16 - פתרון משוואות רמה א 0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.

קרא עוד

Limit

Limit פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:

קרא עוד

מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4

מבחן חוזר במכניקה 55 א יא יחללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4 מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19

קרא עוד

צירים סמויים - דגם סוס SOSS צירים 4 CS55555 CS5552 CS5554 CS55505 מק"ט דגם 34.93mm 28.58mm 25.40mm 19.05mm מידה A 26.99mm 22.23mm 18.2

צירים סמויים - דגם סוס SOSS צירים 4 CS55555 CS5552 CS5554 CS55505 מקט דגם 34.93mm 28.58mm 25.40mm 19.05mm מידה A 26.99mm 22.23mm 18.2 סמויים - דגם סוס SOSS CS55555 CS555 CS555 CS55505 0 18 16 1 דגם.9mm 8.58mm 5.0mm 19.05mm מידה A 6.99mm.mm 18.6mm 1.9mm מידה B 19.70mm 17.8mm 117.8mm 95.5mm מידה C 1.70mm 9.5mm 5.56mm.97mm מידה D 7.1mm

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו אב תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,

קרא עוד

שיעורים מצולמים במדע וטכנולוגיה לחטיבת הביניים חומרי עזר למורה: שיעורים מצולמים ועיבודם הדידקטי כיתה: ח ידע קודם: כוחות ושקול כוחות, החוק השלישי של ני

שיעורים מצולמים במדע וטכנולוגיה לחטיבת הביניים חומרי עזר למורה: שיעורים מצולמים ועיבודם הדידקטי כיתה: ח ידע קודם: כוחות ושקול כוחות, החוק השלישי של ני שיעורים מצולמים במדע וטכנולוגיה לחטיבת הביניים חומרי עזר למורה: שיעורים מצולמים ועיבודם הדידקטי כיתה: ח ידע קודם: כוחות ושקול כוחות, החוק השלישי של ניוטון חוק המנוף ומנופים מסוג ראשון מטרות השיעור: להדגים

קרא עוד

מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

מטלת מנחה (ממן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה

קרא עוד

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של

קרא עוד

בארץ אחרת

בארץ אחרת בארץ אחרת כתבה טל ניצן איירה כנרת גילדר הוצאת עם עובד בע"מ 3112 על הספר זהו סיפור על ילדה שמגיעה יחד עם הוריה לעיר גדולה בארץ ארץ חדשה. הסיפור כתוב בגוף ראשון ומתאר חוויות ראשונות מן העיר הגדולה: גודלה

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את

קרא עוד

אי שוויונים ממעלה ראשונה לארבע יחידות

אי שוויונים ממעלה ראשונה לארבע יחידות אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.

קרא עוד

משוואות דיפרנציאליות מסדר ראשון

משוואות דיפרנציאליות מסדר ראשון אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g

קרא עוד

תרגול 1

תרגול 1 תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת

קרא עוד

נושא: צפיפות חומרים

נושא: צפיפות חומרים נושא: צפיפות חומרים רצף מערכי שעורים כיתה ז: נפח מסה משקל וצפיפות מילכה ברקו גרש 3.11.2011 מושגים בסיסיים: נפח ומסה מסה=כמות החומר. מכשיר מדידה: מאזניים. יחידות: ק"ג, גרם, טון. נפח= המקום שהגוף עשוי החומר/ים

קרא עוד

מתמטיקה של מערכות

מתמטיקה של מערכות מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות

קרא עוד

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו

קרא עוד

Microsoft Word - 28

Microsoft Word - 28 8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת

קרא עוד

מתמטיקה לכיתה ט פונקציה ריבועית

מתמטיקה לכיתה ט פונקציה ריבועית מתמטיקה לכיתה ט פונקציה ריבועית צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת

קרא עוד

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, ,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא

קרא עוד

תומכי מדף מק ט תאור גימור נושא מדף חובק לזכוכית לקדח 5 מ מ ניקל CS3022 נושא מדף חובק לזכוכית בעובי מ- 5 עד 6 מ מ להרכבה עם בורג סיבית ניקל CS3023 ברגי

תומכי מדף מק ט תאור גימור נושא מדף חובק לזכוכית לקדח 5 מ מ ניקל CS3022 נושא מדף חובק לזכוכית בעובי מ- 5 עד 6 מ מ להרכבה עם בורג סיבית ניקל CS3023 ברגי תומכי מדף נושא מדף חובק לזכוכית לקדח 5 מ מ CS3022 נושא מדף חובק לזכוכית בעובי מ- 5 עד 6 מ מ להרכבה עם בורג סיבית CS3023 8 נושא מדף חובק לזכוכית בעובי 8 עד מ מ להרכבה עם בורג סיבית נושא מדף חובק לקדח 5

קרא עוד

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם

קרא עוד

פרויקט "רמזור" של קרן אביטל בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו

פרויקט רמזור של קרן אביטל בס ד מערך שיעור בנושא: פונקציה טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנושא הפונקציות הנלמד בכתה ט' בכל הרמות. עזרי ההוראה בהם נשתמש: מחשב, ברקו, דפי עבודה

קרא עוד

Microsoft Word - ex04ans.docx

Microsoft Word - ex04ans.docx 1 אריאל סטולרמן סטטיסטיקה / תרגיל #4 קבוצה 03 Φ2. ההתפלגות הנורמלית (1) Φ2.2. Φ2.22. Φ1.5 1Φ1.5. Φ0. Φ5 1Φ5 1Φ4.417. Φ 1Φ 1Φ4.417. נתון: ~ 0,1 ( a )להלן חישוב ההסתברויות: 2.22 1.55 Φ1.55 Φ2.22 Φ1.55 1Φ2.22

קרא עוד

שקופית 1

שקופית 1 שלומית לויט "עץ החשיבה" שלמה יונה- העמותה לחינוך מתמטי לכל מציגים: "ימין ושמאל- לומדים חשבון" 4 מקורות קושי להתמצאות במרחב אצל ילדים תפיסה אפיזודית התנהגות ייצוגית מוגבלת. היעדר מושגים ומונחים. אגוצנטריות.

קרא עוד

אחריות קבוצתית

אחריות קבוצתית אחריות קבוצתית משך הפעולה: 56 דק' מטרות: 1. החניך יכיר בסוגים ומאפיינים שונים של קבוצות ובייחודיות קבוצת ח'. 2. החניך ילמד מהי אחריות קבוצתית לעומת אחריות אישית והצורך של הקבוצה בשתיהן למען השגת מטרותיה.

קרא עוד

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0 פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות

קרא עוד

Algorithms Tirgul 1

Algorithms Tirgul 1 - מעגלי אוילר ומסלולי אוילר תרגול 1 חידה: האם אפשר לצייר את הציורים הבאים בלי להרים את העיפרון מהנייר? 1 קצת אדמיניסטרציה אופיר פרידלר ophir.friedler@gmail.com אילן כהן - ilanrcohen@gmail.com שעות קבלה

קרא עוד

שלחן ערוך או"ח ח"ד

שלחן ערוך אוח חד תת זת ע ק וד ו ךו קל וד ל ו תו תוד ו לת ק דו ל ק ל וד על ל ק וד ו לוע ו וד ל וו ק צצ ו תע ת ת ו ד ל ך ע ק ק ץע וצע לד ו ל ל ךכלו ךצ זל דו דכ ע כו ד צוו צצקל צצק תל ת ףעל ו ו לו ךצו זל דו ד ע ו תת ךותל

קרא עוד

ע 001 ינואר 10 מועד חורף פתרונות עפר

ע 001 ינואר 10 מועד חורף פתרונות עפר בגרות ע 00 ינואר 0 שאלון 50 הציר האופקי, ציר ה-, x מתאר את הזמן שעובר, בשניות, מתחילת השחייה כל משבצת היא בת 0 שניות הציר האנכי, ציר ה - y, מתאר את המרחק מקצה הבר כה כל משבצת היא בת 0 מטר כאשר הקו עולה

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

Microsoft Word - beayot tnua 3 pitronot.doc

Microsoft Word - beayot tnua 3 pitronot.doc ק( בעיות מילוליות - בעיות תנועה.7 פתרון: א. נסמן : קמ"ש קמ"ש מהירותו של הולך הרגל. מהירותו של רוכב האופניים. משך זמן הליכתו של הולך הרגל מקיבוץ א' לקיבוץ ב'. משך זמן רכיבתו של רוכב האופניים מקיבוץ א' לקיבוץ

קרא עוד

עמוד 1 מתוך 5 יוחאי אלדור, סטטיסטיקאי סטטיסטיקה תיאורית + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- 2 תחומים עיקריים- סטט

עמוד 1 מתוך 5 יוחאי אלדור, סטטיסטיקאי סטטיסטיקה תיאורית + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- 2 תחומים עיקריים- סטט עמוד מתוך + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- תחומים עיקריים- וסטטיסטיקה היסקית; בסטטיסטיקה היסקית משערים השערות, משווים בין קבוצות באוכלוסיה ועוד, אך גם מ ניתן ללמוד הרבה על האוכלוסיה-

קרא עוד

Microsoft Word - teachmodel1.doc

Microsoft Word - teachmodel1.doc דגמי הוראה תכנון שיעור נושא השיעור: אסטרטגיות לחישוב נפח תיבה כיתה: ד נושא בתכנית הלימודים: נפח תיבה (עמוד 92) מיומנויות מתכנית הלימודים: פיתוח ראייה מרחבית - קשרים בין מודל דו-ממדי למודל תלת-ממדי והתנסות

קרא עוד

סדרה חשבונית והנדסית

סדרה חשבונית והנדסית .2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.

קרא עוד

(Microsoft PowerPoint - \347\357 \371\370\351\351\341\370)

(Microsoft PowerPoint - \347\357 \371\370\351\351\341\370) דילמות בחיי ו של CFO חן שרייב ר, CFO ACE AUTO DEPOT LTD. כנס אילת, ספטמבר 2008 1 2 דור ההמשך מבפנים או מב חוץ? 1. דור ה המשך מבפנים או מבחוץ? עולות מספר שאלות: העדפה האם להעדיף מועמד לתפקיד CFO שגדל בארגון,

קרא עוד

כמה מילים לפני שקופצים לתוך ה...ציור זוכרים? מרי פופינס קופצת עם הילדים לתוך הציורים, כמה מילות קסמים והם בפנים! וכמה קורה שם בפנים: הילולה, הרפתקה, ו

כמה מילים לפני שקופצים לתוך ה...ציור זוכרים? מרי פופינס קופצת עם הילדים לתוך הציורים, כמה מילות קסמים והם בפנים! וכמה קורה שם בפנים: הילולה, הרפתקה, ו כמה מילים לפני שקופצים לתוך ה...ציור זוכרים? מרי פופינס קופצת עם הילדים לתוך הציורים, כמה מילות קסמים והם בפנים! וכמה קורה שם בפנים: הילולה, הרפתקה, וגם כעסים וקינאה. אז תנו לי יד וקדימה קופצים, רק תזכרו

קרא עוד

חלק א' – הקדמה

חלק א' – הקדמה ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי

קרא עוד

פקולטה לחינוך מנהל סטודנטים Beit Berl College الكلية االكاديمية بيت بيرل 20/06/2016 י"ד/סיון/תשע"ו ייעוץ וירטואלי הרכבת מערכת )רישום לקורסים( באמצעות

פקולטה לחינוך מנהל סטודנטים Beit Berl College الكلية االكاديمية بيت بيرل 20/06/2016 יד/סיון/תשעו ייעוץ וירטואלי הרכבת מערכת )רישום לקורסים( באמצעות 20/06/2016 י"ד/סיון/תשע"ו ייעוץ וירטואלי הרכבת מערכת )רישום לקורסים( באמצעות האינטרנט שלום רב, לנוחותכם, הרכבת המערכת לשנה"ל תשע"ז תתבצע באמצעות האינטרנט ייעוץ וירטואלי. הרכבת המערכת )רישום לקורסים( תעשה

קרא עוד

תוצאות סופיות מבחן אלק' פיקוד ובקרה קיץ 2014

תוצאות סופיות מבחן  אלק' פיקוד ובקרה קיץ  2014 תוצאות סופיות למערכות אלק' פיקוד ובקרה להנדסאים וטכנאים מועד קיץ תשע"ד 7/2014 פותר המבחן: מתי דוד למרות מאמצי לפתור נכון, יתכן ונפלו טעויות בפתרון, אשמח לקבל הערותיכם בדוא"ל : @hotmail.com ההצלחה שלי היא

קרא עוד

îáçï îúëåðú îñ' 1

îáçï îúëåðú îñ'  1 5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä

קרא עוד

Microsoft Word ACDC à'.doc

Microsoft Word ACDC à'.doc דו"ח מסכם בניסוי: AC/DC חלק: א' סמסטר ב' תשס"א שם הבודק : תאריך הבדיקה: I שם מדריך הניסוי (שם מלא): סרגיי ציון הדו"ח: II תאריך ביצוע הניסוי: 14/05/001 תאריך הגשת הדו"ח: 1/05/001 הדו"ח מוגש על ידי: II I

קרא עוד

כובע קסמים מאת לאה גולדברג איורים: רינת הופר עיצוב: אבנר גלילי הוצאת ספרית פועלים 2005 על הספר כובע הקסמים הוא התגשמות חלומה של ילדה: חפץ מופלא שימלא

כובע קסמים מאת לאה גולדברג איורים: רינת הופר עיצוב: אבנר גלילי הוצאת ספרית פועלים 2005 על הספר כובע הקסמים הוא התגשמות חלומה של ילדה: חפץ מופלא שימלא כובע קסמים מאת לאה גולדברג איורים: רינת הופר עיצוב: אבנר גלילי הוצאת ספרית פועלים 2005 על הספר כובע הקסמים הוא התגשמות חלומה של ילדה: חפץ מופלא שימלא את משאלות ליבה. בעזרת כובע הקסמים הדמיוני, מגשימה הילדה

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

מעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשע"ב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו

מעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשעב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים וסלילים )משרנים(. ראשית נראה כיצד משפיע כל אחד מהרכיבים הללו על המתח במעגל. נגד חוק אוהם: במהלך לימודיכם

קרא עוד

מצגת מבנה וטבלה מתוקן [לקריאה בלבד]

מצגת מבנה וטבלה מתוקן [לקריאה בלבד] טבלה מחזורי ת האלקטרונים ברמה האחרונה בכל אטום, הם אלו שיוצרים קשר עם אטום/אטומים נוספים. אלקטרונים אלו נקראים אלקטרונים וולנטיים או אלקטרונים ערכיים. הרמה האחרונה באטום, המכילה את האלקטרונים הוולנטיים

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

טלי גרש

טלי גרש ד"ר דורית תבור דיקן הנדסה כימית פריסת הקורסים ותוכנית הלימודים בהנדסה כימית התמחות תעשייה תהליכית תקף מתש"ע התמחות אנרגיה תקף מתשע"ד עידכון: יוני 0 טל' המכללה האקדמית להנדסה סמי שמעון (ע"ר) קמפוס באר שבע

קרא עוד

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3> האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע

קרא עוד

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

פונקציה מסדר ראשון;  הגדרת קו ישר: - הצגה עי ביטוי אלגברי וגרפי המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה

קרא עוד

אבן שפה רחבה ישרה, אריחי אקרסטון, טיילת הרצליה, נתנאל בן יצחק אדריכל. 2 אבני שפה כביש 13 אבני גן אלמנטי תיחום 21 גומה לעץ וחבקים 26 תיעול וניקוז אבני

אבן שפה רחבה ישרה, אריחי אקרסטון, טיילת הרצליה, נתנאל בן יצחק אדריכל. 2 אבני שפה כביש 13 אבני גן אלמנטי תיחום 21 גומה לעץ וחבקים 26 תיעול וניקוז אבני אבן שפה רחבה ישרה, אריחי אקרסטון, טיילת הרצליה, נתנאל בן יצחק אדריכל. אבני שפה כביש 3 אבני גן אלמנטי תיחום גומה לעץ וחבקים 6 תיעול וניקוז אבני שפה תיחום וניקוז תו ירוק מוצר חדש אבני שפה תיחום וניקוז: אבני

קרא עוד

פ רק כה ) פ ס וק ים ז-יא( ז ו א ל ה י מ י ש נ י ח י י א ב ר ה ם א ש ר ח י: מ א ת ש נ ה ו ש ב ע ים ש נ ה ו ח מ ש ש נ ים. ח ו י ג ו ע ו י מ ת א ב ר ה ם

פ רק כה ) פ ס וק ים ז-יא( ז ו א ל ה י מ י ש נ י ח י י א ב ר ה ם א ש ר ח י: מ א ת ש נ ה ו ש ב ע ים ש נ ה ו ח מ ש ש נ ים. ח ו י ג ו ע ו י מ ת א ב ר ה ם פ רק כה ) פ ס וק ים ז-יא( ז ו א ל ה י מ י ש נ י ח י י א ב ר ה ם א ש ר ח י: מ א ת ש נ ה ו ש ב ע ים ש נ ה ו ח מ ש ש נ ים. ח ו י ג ו ע ו י מ ת א ב ר ה ם ב ש יב ה טו ב ה, ז ק ן ו ש ב ע, ו י א ס ף א ל ע מ יו.

קרא עוד

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשעח m 2 הוראות לנבחן: )1( הבחינה מו מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות

קרא עוד

הצעת פתרון בחינת הבגרות בעברית )שאלון א'( חורף 1023 שאלון 120, הצעת הפתרון הבחינה בעברית )שאלון א( נכתבה על-ידי דפנה עמית, סהר שוקר ועופר סלמן ש

הצעת פתרון בחינת הבגרות בעברית )שאלון א'( חורף 1023 שאלון 120, הצעת הפתרון הבחינה בעברית )שאלון א( נכתבה על-ידי דפנה עמית, סהר שוקר ועופר סלמן ש הצעת פתרון בחינת הבגרות בעברית )שאלון א'( חורף 1023 שאלון 120,022207 הצעת הפתרון הבחינה בעברית )שאלון א( נכתבה עלידי דפנה עמית, סהר שוקר ועופר סלמן שגיא, מורים ללשון בבתי הספר של לחמן. פרק ראשון הבנה והבעה

קרא עוד

חטיבה של ג'יי סי הלת' קר בע"מ 1/10/2015 תקנון מבצע "תוכניות שנתיות" הטבה של חודשיים מתנה בעת רכישת "תוכנית שנתית" של עדשות מגע חד-יומיות ממותג אקיוביו

חטיבה של ג'יי סי הלת' קר בעמ 1/10/2015 תקנון מבצע תוכניות שנתיות הטבה של חודשיים מתנה בעת רכישת תוכנית שנתית של עדשות מגע חד-יומיות ממותג אקיוביו 1/10/2015 תקנון מבצע "תוכניות שנתיות" הטבה של חודשיים מתנה בעת רכישת "תוכנית שנתית" של עדשות מגע חד-יומיות ממותג אקיוביו TruEye 1-DAY ACUVUE או 1-DAY ACUVUE MOIST או.1-DAY ACUVUE MOIST for ASTIGMATISM

קרא עוד

ג) ד) א) ב) ה) ז) ח) ט) אברהם אבינו בראשית פרק יב ) ו י אמ ר ה' א ל אב ר ם ל ך ל ך מ אר צ ך ומ מ ול ד ת ך ומ ב ית אב י ך א ל ה אר ץ א ש ר אר א ך : ) ו

ג) ד) א) ב) ה) ז) ח) ט) אברהם אבינו בראשית פרק יב ) ו י אמ ר ה' א ל אב ר ם ל ך ל ך מ אר צ ך ומ מ ול ד ת ך ומ ב ית אב י ך א ל ה אר ץ א ש ר אר א ך : ) ו ג) ד) א) ב) ה) ז) ח) ט) אברהם אבינו בראשית פרק יב ) ו י אמ ר ה' א ל אב ר ם ל ך ל ך מ אר צ ך ומ מ ול ד ת ך ומ ב ית אב י ך א ל ה אר ץ א ש ר אר א ך : ) ו א ע ש ך ל ג וי ג ד ול ו א ב ר כ ך ו א ג ד ל ה ש מ

קרא עוד

Microsoft Word - beayot hespek 4 pitronot.doc

Microsoft Word - beayot hespek 4 pitronot.doc בעיות מילוליות - בעיות הספק.6 פתרון: נסמן: מספר המכשירים שתיקן טכנאי א' בשעה אחת (קצב עבודתו). ( ) כל אחד מהטכנאים תיקן מספר המכשירים שתיקן טכנאי ב' בשעה אחת (קצב עבודתו). 0 מכשירים, לכן: 0 שעות משך זמן

קרא עוד

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ -28- לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' 107-105(.Ⅰ 5 656 הסבר נדב יצא מביתו )נקודה (, צעד 5 ק"מ לכיוון מזרח, והגיע למסעדה

קרא עוד

Microsoft Word - kot.doc

Microsoft Word - kot.doc החתול והשועלה לאיכר אחד היה חתול. חתול יפה אבל פראי, שעשה לו צרות רבות. חבל היה לאיכר להיפרד מהחתול, אך לא הייתה ברירה. אחרי התעלול האחרון שם אותו בשק ויצא אתו ליער. שם שחרר את החתול. יהיה מה שיהיה. אם

קרא עוד

PowerPoint Presentation

PowerPoint Presentation עיניים נוצצות אתגר קרת תוכן העלילה זה סיפור על ילדה שאהבה, יותר מהכל, דברים נוצצים. היתה לה שמלה עם נוצצים, וגרביים עם נוצצים, נעלי בלט עם נוצצים. ובובה כושית שקראו לה כריסטי, על שם העוזרת שלהם, עם נוצצים.

קרא עוד

פרופיל ארגוני - תדריך להכרת שירות - מסלול מלא ציין כאן את מירב הפרטים המזהים: שם השירות, כתובת, שם מנהל השירות, שמות עובדים בכירים, שעות קבלת קהל, שעו

פרופיל ארגוני - תדריך להכרת שירות - מסלול מלא ציין כאן את מירב הפרטים המזהים: שם השירות, כתובת, שם מנהל השירות, שמות עובדים בכירים, שעות קבלת קהל, שעו פרופיל ארגוני תדריך להכרת שירות מסלול מלא ציין כאן את מירב הפרטים המזהים: שם השירות, כתובת, שם מנהל השירות, שמות עובדים בכירים, שעות קבלת קהל, שעות פתיחה ונעילה. מספרי טלפון בשירות ובבית עובדים בכירים

קרא עוד