<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

מסמכים קשורים
תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

מטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו

חשבון אינפיניטסימלי מתקדם 1

מבוא ללוגיקה ולתורת הקבוצות

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - hedva 806-pitronot-2011.doc

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

שיעור 1

áñéñ åîéîã (ñéåí)

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

פתרונות לדף מס' 5

מתמטיקה של מערכות

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

אנליזה מתקדמת

מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו

מבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - 01 difernziali razionalit

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

תאריך הבחינה 30

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'

שיעור מס' 6 – סבולות ואפיצויות

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות

Microsoft Word - 38

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

MathType Commands 6 for Word

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

Microsoft Word - Sol_Moedb10-1-2,4

מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

Limit

אוניברסיטת חיפה החוג למדעי המחשב מבוא למדעי המחשב מועד א' סמסטר ב', תשע"ג, משך המבחן: שעתיים וחצי חומר עזר: אסור הנחיות: וודאו כי יש בידיכם

מבחן סוף סמסטר מועד ב 28/10/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, גדי אלכסנדרוביץ הוראות: א. בטופס המבחן 6 עמודים (כולל דף זה) ו

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י

Microsoft Word - tutorial Dynamic Programming _Jun_-05.doc

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

ע 001 ינואר 10 מועד חורף פתרונות עפר

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

אוניברסיטת חיפה החוג למדעי המחשב מרצה: שולי וינטנר מתרגלים: נעמה טוויטו, מחמוד שריף מבוא למדעי המחשב סמסטר א' תשע"ב בחינת סיום, מועד א', הנחי

מקביליות

Microsoft Word - אלגברה מעורב 2.doc

מספר נבחן / תשס"ג סמסטר א' מועד א' תאריך: שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Algorithms Tirgul 1

Microsoft Word - solutions.doc

תוכן הגדרת שאלת רב-ברירה ]אמריקאית[...2 הגדרת שאלת נכון\לא נכון...8 שאלות אמריקאיות 1

שאלהIgal : מערכים דו מימדיים רקורסיה:

שימו לב! יש לענות על כל השאלות בתוך טופס הבחינה, מחברות טיוטא הולכות לגריסה. על השאלות יש לענות במקום המיועד אחרי כל שאלה. תאריך הבחינה: שם

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>

PowerPoint Presentation

Microsoft Word - c_SimA_MoedB2005.doc

תרגול 1

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

Microsoft Word B

מבוא למדעי המחשב

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה

אוניברסיטת חיפה החוג למדעי המחשב.5.6 מבוא למדעי המחשב סמסטר א' תשע"ז בחינה סופית מועד א', מרצה: שולי וינטנר מתרגלים: סמאח אידריס, ראמי עילבו

תרגיל 5-1

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ

îáçï îúëåðú îñ' 1

מבחן סוף סמסטר מועד א 15/02/08 מרצה אחראית: דר שירלי הלוי גינסברג מתרגלים: גלעד קותיאל, דניאל גנקין הוראות: א. בטופס המבחן 7 עמודים ו 4 דפי נוסחאות. ב

Microsoft Word - 28

Microsoft Word - beayot tnua 3 pitronot.doc

Microsoft Word - Ass1Bgu2019b_java docx

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

פקולטה לחינוך מנהל סטודנטים Beit Berl College الكلية االكاديمية بيت بيرل 20/06/2016 י"ד/סיון/תשע"ו ייעוץ וירטואלי הרכבת מערכת )רישום לקורסים( באמצעות

שחזור מבחן יסודות הביטוח – מועד 12/2016

YLA Crochet Along פרויקט לסרוג יחד YLA חלק 6 בחלק 6 של לסרוג יחד זה נהפוך את שני העיגולים האחרונים לריבועים ונחבר את ארבעת הריבועים יחד לריבוע אחד גדו

מבוא למדעי המחשב - חובלים

פרויקט "רמזור" של קרן אביטל בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו

אי שוויונים ממעלה ראשונה לארבע יחידות

ðñôç 005 î

סדנת תכנות ב C/C++

מבוא לתכנות ב- JAVA תרגול 7

שאלה 2. תכנות ב - CShell

פייתון

משוואות דיפרנציאליות מסדר ראשון

ייבוא וייצוא של קבצי אקסל וטקסט

שאלהIgal : מערכים דו מימדיים רקורסיה:

08-78-(2004)

שקופית 1

Microsoft Word - 14

. שאלה 1: ה אי x] T : R 4[ x] R 4[ אופרטור ליניארי מוגדר על-ידי T( ax bx cx d) bx ax cx c )13 נק'( א( מצאו את הערכים העצמיים, המרחבים העצמיים

מקביליות

א"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)

תמליל:

האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע הערות על הפתרונות ועל טעויות, אם ישנן. מוזמנים להפיץ ו/או להעתיק בכל דרך שהיא בתוספת קרדיט לכותבת חוץ מזה אני מעבירה שיעורים פרטיים לכל דורש/ת בת-חן סרי 052-6543101 seribatchen@gmail.com - 1 -

שאלה 1: הוכח או הפרך: ( P( A) P( B)) A B (( \ ) C C A B = A ) ( B A= ) (13 נקודות) (12 נקודות) פתרון 1: X P( A) X A קבוצת חזקה מוגדרת על ידי: ; נניח (B ) Pונראה (A )P אם יוצא מכך שבהכרח A B P( A) B פירושו, לפי הגדרת קבוצת חזקה: )P (A )P (B כלומר, לפי הגדרת הכלה: X B) X ( X P( A) בפרט, (A A P( ומכאן ש: A B -1-2 -3 נשתמש בשלושה כללים: C X \ Y = X Y (מסקנה מידית מהגדרת הפרש) ( X Y ) C = X C Y (זהו אחד מכללי דה-מורגן לאיחוד וחיתוך) C (טריוויאלי) C C ( X ) = X ( A \ B) C = A נניח C C C C C C C C מכיוון ש: ( A \ B) = ( A B ) = A ( B ) = A B C C A B= נקבל: A כלומר, B לא תורם כלום לאיחוד, C ופירוש הדבר שהוא מוכל ב- A.פורמלית: C C C C C A B= A A B A B A. A ופירוש הדבר שהוא לא נחתך עם, A אז B מוכל במשלים של פורמלית: C C C C B A B A = B B A= ( B A ) A= B ( A A) = - 2 -

שאלה 2: (13 נקודות) הוכיחו או הפריכו את הטענה הבאה: (( ( )) ( ( ( ( ) )))) g g = id b a a = b g (12 נקודות) הוכיחו או הפריכו: תהיינה : A B, g : C A פונקציות כך ש- על. אזי על. פתרון 2: רוב העבודה בשאלה הזו היא להבין מה הטענה אומרת. ראשית, זו טענה שנוגעת לפונקציות ששייכות לקבוצה, דהיינו פונקציות שהתחום והטווח שלהן הוא. המבנה של הטענה הוא של תנאי, כלומר לפי הטענה פונקציה שמקיימת את מה שכתוב לפני החץ (מצד שמאל), בהכרח מקיימת גם את מה שכתוב אחרי החץ (מצד ימין). g ( g= id ) לפני החץ כתוב: שזה בדיוק אומר ש- הפיכה מימין.. ( a ( ( a) b) ) אחרי החץ כתוב: = b כלומר, לכל מספר ממשי b, קיים מספר ממשי a שולחת אותו ל- b ש- זה בדיוק אומר ש- על. אז מה שכתוב בטענה, בתרגום לעברית: "כל פונקציה מ- ל-, אם היא הפיכה מימין אז היא על." ואנחנו יודעים שלכל פונקציה שהיא הפיכה מימין אמ"מ על. כעת נוכיח את הטענה; מתקיים: תהי g ( g= ונניח ש- ) id ( a ( ( a) b) ) צ"ל: = b יהי, b g( b) = g ( b) מההנחה: = b ( ) נבחר: =a ונקבל הדרוש. g( b) בואו נראה אם הטענה נכונה; - 3 -

a A על פירושו שלכל b B קיים a) ( כך ש: = b : A B ( ) g( c) = g( c) = b c C על אמ"מ לכל b B קיים g : C B כך ש: בואו נצייר את זה: g אז בציור שלנו g היא אכן על. אבל שימו לב שבחרנו g שהיא חח"ע ועל. מה היה קורה אם לא היתה כזו? התכונה הקריטית לענייננו, ואת זה אפשר לראות די בקלות מהציור, היא היותה של g לא קשה למצוא g שאינה על שתגרום גם להרכבה להיות לא על. למשל: על. אז הטענה לא נכונה. בתור דוגמא נגדית, אני משאירה לכם לכתוב בצורה פורמלית את מה שמומחש בציור. ואם כבר בהרכבות עסקינן, אז באופן כללי כדאי לזכור: אם אם אם - 4 -, g על, אז ההרכבה g g חח"ע,, g אז ההרכבה g על. על, אז גם על. גם חח"ע.

אם g חח"ע, אז g חח"ע. אם פונקציה אחת היא חח"ע או על (או גם וגם), לא ניתן להסיק מזה דבר על ההרכבה! טיפה אוף טופיק, אבל חובה לזכור: הפיכה מימין הפיכה משמאל על חח"ע - 5 -

שאלה 3: A { N : X 5} ( \ { }) 25) נקודות) תהי = X. A= נגדיר יחס על באופן הבא: BC x C B= x הוכיחו כי אנטי-רפלקסיבי, סימטרי ולא טרנזיטיבי. פתרון 3: A היא קבוצה שאיבריה הם קבוצות של מספרים טבעיים מגודל 5. } { הקבוצה 3, 4, 5, 6, 7 היא דוגמא לאיבר ב-. A שתי קבוצות ב- A מקיימות את היחס אם ההפרש ביניהן הוא קבוצה מגודל 1. (למעשה, לא דייקתי פה. הניסוח הפורמלי של היחס מקנה חשיבות לסדר- יש הבדל בהגדרה בין BC ל-.CB עוד מעט נראה ש- סימטרי, וכך נצדיק בדיעבד את חוסר הדיוק.) למשל, הקבוצות: 7} { 3, 4, 5, 6, ו- 10} { 3, 4, 5, 6, הקבוצות: מקיימות את היחס. 7} { 3, 4, 5, 6, ו- 12} { 8, 9, 10, 11, לא מקיימות את היחס. אנטי-רפלקסיבי: B A( BB) אנטי-רפלקסיבי ( ) ( ) B A x( B \ B { x} ) B A BB = ולפי הגדרת :. B \ B=, ופרט לא קיים x כך ש-{ x { B \ B= ואכן, לכל B A מתקיים: סימטרי: ( ) BC, A BC CB סימטרי ולפי הגדרת : ( ) ( ) ( ) ( ) BC, A BC CB BC, A x C \ B= { x} y B \ C= { y} B ו- Cשתיהן קבוצות מגודל 5. לכן, אם ההפרש Cהוא \ B מגודל 1, ברור כי גם ההפרש B \ C הוא מגודל 1. נפרמל את זה כך: C ( ) ( C B) ( C \ B) ( C B) C= C B = מכיוון ששתי הקבוצות באיחוד זרות, אפשר לכתוב: - 6 -

C = C \ B + C B C B = 4, C \ B = 1 נניח: BC ידוע כי = 5 C ומההנחה נקבל ולכן: באופן דומה מתקיים: B = B \ C + B C B \ C = 1 B C = 4 ידוע כי = 5 B וקיבלנו: ולכן: CB אז אכן מתקיים : (( ) ) BC,, D A BC CD BD (( ) ) BC,, D A BC CD BD לא טרנזיטיבי: לא-טרנזיטיבי כלומר: לא-טרנזיטיבי ( ) BC,, D A BC CD BD ובאופן שקול: לא-טרנזיטיבי, Cהוא D מגודל 1, אז ל-. BD אז צריך לתת דוגמא ל- BC,, D כאלו. נשים לב שאם ההפרש בין, BC הוא מגודל 1, וההפרש בין,B יש לפחות 3 איברים משותפים. D,B עם בדיוק 3 איברים משותפים, יתקיים: אם נמצא D { } { } { } B= 1, 2, 3, 4, 5, C= 1, 2, 3, 4, 6, D= ניקח: 1, 2, 3, 8, 6 ונקבל את הנדרש. ( D= (אפשר גם לקחת, BC שמקיימות את היחס ו- B - 7 -

שאלה 4: (5 נקודות) הגדירו: פונקציה : A B הפיכה משמאל (20 נקודות) תהיינה H, G : N N פונקציות המוגדרות באופן הבא: H ( x) = 2x+ 1 x 1, x> 1 G( x) = 5, x= 1 F הוכח כי. F( ) = G H F : N N N נגדיר N באופן הבא: על. פתרון 4: g = id A : A B g : B A הפיכה משמאל פירושו שקיימת כך ש:,(id B זכרו: idאו A אם התלבטתם מה לכתוב באינדקס של פונקצית הזהות ) בהרכבת שתי פונקציות ששווה ל ז הוּת, זו תמיד הזהות על התחום של הפונקציה הפנימית. נפתח בשאלה: מי זו? מאיפה היא הגיעה פתאום? אז ככה: את אנחנו פוגשות לראשונה בתור הארגומנט של F (כלומר, F מקבלת את. N אם נתבונן בהגדרות של כקלט), אז חייבת להגיע מהתחום של, F כלומר: N,H ו- F נוכל לראות שבאמת ההרכבה מוגדרת כמו שצריך. G הרבה פעמים משתמשים באובייקט כללי מבלי לציין במפורש מהו, ומצפים שנבין מההקשר. לפעמים זה מאד פשוט, כמו בדוגמא- נגדיר : על ידי, ( x) = sinx שבה x הוא מספר ממשי. לפעמים זה יהיה פחות ברור, ותצטרכו להתחקות אחרי מקור האובייקט כמו שעשינו למעלה.. F את H ו- G די פשוט להבין. בואו נדבר טיפה על G (שגם הן N F מקבלת פונקציה ב-, N מרכיבה אותה מצד אחד עם H ומצד שני עם N N פונקציות ב- N) ומחזירה את הפונקציה המורכבת, גם היא ב-. N צריך להראות ש- F על, ונזכור ש- F על פירושו: אז בהינתן ( ( ) ) g N N N N F = g g N N F( ) = G H = g שתקיים: כלשהי, אנחנו מחפשות g ברור שה- המבוקשת תלויה ב- g עם תוספות שינטרלו את H ו- G. שהתחלנו ממנה. צריכה להיות מין משודרגת, זה מצב שקורה הרבה פעמים, ולא רק עבור פונקציות, אז אני רוצה להתעכב עליו טיפה. בואו נשים רגע מספרים רציונליים במקום פונקציות: r x s= y יהיו ואנחנו מחפשים x Q שיקיים: r, s, y Q \{0} - 8 -

אז היינו רוצים ש- x יהיה y בתוספת דברים שינטרלו את r ו- s 1 1 חילוק ולכן ניקח: y =x ונקבל את מה שחיפשנו. r s. מה שמנטרל כפל זה אותו רעיון תקף לגבי פונקציות, כשהדרך לנטרל פונקציה זה להרכיב אותה עם ההופכית שלה. הבעיה היא שלא לכל פונקציה יש הופכית. למעשה, אצלנו H ו- G שתיהן לא הפיכות. אבל (שימו לב!) במקרה הזה מספיק למצוא הופכיות חד-צדדיות. ובמפורש: ל- H דרושה הופכית שמאלית ול- G דרושה הופכית ימנית. בשביל זה מספיק ש- H תהיה הפיכה משמאל, וש- G תהיה הפיכה מימין. ואכן, - H חח"ע, כלומר היא הפיכה משמאל, ו- G על, כלומר היא הפיכה מימין. נראה כי H חח"ע. H ( x) = H ( y) כך ש- x, יהיו y N 2x+ 1= 2y+ אזי מהגדרת H: 1 x= נחסר 1 ונחלק ב- 2 ונקבל: y אז H חח"ע ולכן הפיכה משמאל. כלומר, יש ל- H הופכית שמאלית, נסמן אותה ב-. Ĥ כעת, נראה כי G על. ( x= y+ יהי, y N אז ניקח 1 G( x) = x 1= y+ 1 1= ונקבל: y x= y+ 1 (כי 1. אז Gעל ולכן הפיכה מימין. כלומר, יש ל- G הופכית ימנית, נסמן אותה ב- Ĝ = Gˆ g Hˆ N כעת, נגדיר: N על ידי: F( ) = F( Gˆ g Hˆ ) = G Gˆ g Hˆ נקבל: H = g כנדרש. לכן F על. - 9 -

שאלה 5: αn,,α1,...,α2 פסוקים לא בהכרח β כאשר α1, α2,..., αn (5 נקודות) הגדירו: β יסודיים.. α1, α2,..., αn הוכיחו או הפריכו: נתון כי β.i 10) נקודות) אם β סתירה, אז α1 α2... αn סתירה.. α β כך ש- 1 i n נקודות) קיים 10).ii i פתרון 5: α1, α2,..., αn פירושו: β בכל הצבת ערכי אמת בפסוקים הפשוטים המרכיבים את α, α,..., α, β כך ש- 1 2 n,α1,...,α2 αn אמיתיים כולם, גם β אמיתי.. α1, α2,..., αn נניח שמתקיים β i. נניח ש- β סתירה, כלומר שבכל מקרה β שקרי. אם α1 α2 לא... αn סתירה, אז יש מצב בו α1 α2... αn אמיתי. β שקרי תמיד, ובפרט במצב בו α1 α2... αn אמיתי, וזו סתירה לגרירה הטאוטולוגית. לכן אם β סתירה, אז גם α1 α2... αn סתירה..ii נפריך על ידי דוגמא נגדית: α1= p α = q 2 β = p q ניקח: כאשר, pq הם פסוקים פשוטים שונים. α1, α2 מתקיים: β α β, אבל: α β 1 2-10 -

שאלה 6:, A C= = B D (13 נקודות) הוכיחו כי אם A BC, D אזי. A C B D ומתקיים:. (12 נקודות) (0,1) הוכיחו כי פתרון 6: A C= = B D נניח: A BC, D ו:. ל- B D צ"ל: A C B D כלומר, צריך להוכיח שקיימת פונקציה חח"ע ועל מ- A C באופן כללי, ישנן מספר דרכים להראות ששתי קבוצות, AB שוות עוצמה: 1- למצוא פונקציה : A B חח"ע ועל. -2 למצוא פונקציות על, : A B g : B A על. -3 למצוא פונקציות חח"ע, : A B g : B A חח"ע. -4 למצוא פונקציות על, : A B g : A B חח"ע. אין לנו שום מידע קונקרטי על הקבוצות המדוברות, אבל כן ידוע לנו משהו על פונקציות חח"ע ועל, דהיינו- : A B אנחנו יודעים שקיימת פונקציה חח"ע ועל A B g : C D אנחנו יודעים שקיימת פונקציה חח"ע ועל C D מהנתון מהנתון אז אין ממש ברירה (וזה נהדר!) אלא להגדיר hבאופן : A C B D הבא: ( x), x A h( x) = g( x), x C כעת נותר לוודא כי h מוגדרת היטב, חח"ע ועל. h מוגדרת היטב : מהנתון =C Aמקבלים שכל איבר ב- A Cשייך ל- A לשתיהן. x) x C g( ולכן: D x A ( x) כמו כן, B או ל- C אבל לא ) ( ו- ) ( ( ( ) ) x A C h x B D h חח"ע: כך ש: y) h( x) = h( - 11 - x, יהיו y A C

B שייכים אחד ל- )h,(x )h (y נקבל כי, C והשני ל- A שייכים אחד ל-,x אם y והשני ל- D וזו סתירה כי =D. B. g h x, y A x, אזי y C ואז "יורשת" את החד-חד ערכיות מ- או h על: יהי y B D נניח, בלי הגבלת הכלליות, כי y B ( x) = y כך ש: x A על ולכן קיים : A B h( x) לכן, לפי הגדרת, h גם: = y על. לכן h הערה על בה"כ: לא תמיד טורחים להסביר מתי מותר להשתמש בביטוי בלי הגבלת הכלליות (או בראשי תיבות: בה"כ), אבל האמת היא שזה מאד פשוט. בלי הגבלת הכלליות נועד למקרים בהם אנחנו בוחרים באקראי אחד משניים או יותר אובייקטים עם שמות שונים שהנחנו לגביהם בדיוק את אותן ההנחות. למשל, במקרה הזה: x X Y קבוצות ויהי X, Y, יהיו Z מותר לומר: נניח בה"כ ש- x X x X Y אבל במקרה הזה: X Z קבוצות כך ש- X, Y, יהיו Z אסור לומר: נניח בה"כ ש- x X ויהי, arctan הדרך הכי אלגנטית שאני מכירה להראות ש- (0,1) היא בעזרת פונקצית שהיא הפונקציה ההופכית של הפונקציה הטריגונומטרית. tan הגרף של, arctan רק להמחשה - 12 -

לא להיבהל. כל מה שצריך לדעת על arctan לצורך העניין זה שהיא פונקציה חח"ע ועל π π (זה נובע מהרציפות שלה) מ- לקטע ), (. 2 2 π π (, ) 2 2 אז מקבלים ש: ל- (0,1). π π עכשיו צריך להגדיר פונקציה חח"ע ועל מ- ), ( 2 2 באופן כללי, בשביל להגדיר פונקציה חח"ע ועל מקטע כלשהו ), ab ( ככה: x a ( x) (0,1) ), ab : ( מוגדרת על ידי: = b a π π שכנעו את עצמכם שזה עובד, ואחרי כן הציבו =b =a, 2 2 ל- (0,1) עושים. π π את פונקציה החח"ע ועל שהגדרנו מ- ), ( 2 2 ל- (0,1) נסמן ב- arctan : אז (0,1) ועל). לכן: (0,1) היא פונקציה חח"ע ועל (כהרכבה של פונקציות חח"ע - 13 -