עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

גודל: px
התחל להופיע מהדף:

Download "עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)"

תמליל

1 עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה - יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. התייחסות רצינית להכנת העבודה היא תנאי הכרחי להצלחה בהמשך לימודי מתמטיקה ברמה מוגברת. פרק א טכניקה.אלגברית. נושא I.נוסחאות כפל מקוצר. (A + B) (A B) = A B השתמש בנוסחה ופתח סוגריים:. (d )( + d ). (6 0.)(0. + 6). (7 0.)( ) ). ( + )( ). ( + )( ) 6. ( ) ( + ) ( פתח את הסוגריים. העזר בנוסחת הכפל המקוצר.. ( )( + ). ( + )( + )( ). ( + )( ). (m )(m + )(m + ). ( )( + ) 6. ( )( + 6)( + ) ( פתח את הסוגריים, וכנס את האיברים הדומים. העזר בנוסחת הכפל המקוצר.. ( c)( + c) (7c )(7c + ). ( + )( ) ( + )( ). ( + 0c)(0c ) + ( c)(c + ). 80 ( )( + )( + ) (A + B) = A + AB + B (A - B) = A - AB + B ( השתמש בנוסחאות אלה ופתח סוגריים:. ( + ). ( + ). ( 0. ). ( ) ( פתח סוגריים וכנס את האיברים הדומים. העזר בנוסחאות הכפל המקוצר.. ( 7). ( ) ( )( + ) ) 6 פשט: 6). ( 7). ( + 6)( 6) ( +. (m + ) + (m ) (m + )(m ). ( + ) + ( ) ( )( + ). [(m + m) + (m m) ] m. ( )( + )( + ) ( ) 7( פשט את הביטויים הבאים ולאחר מכן הצב את ערכי ה- הנתונים וחשב.. ( - )( + ) + ( ) - = ( ) ( + ) 0. ( ) = -. (0. 8) + (0. + 8) = - 0

2 ףסוי תמר טרוא ב"טח אשונ םירבש םוצמצ :II :םצמצו הנכמו הנומ םימרוגל קרפ. א) ) ( ב) 6 7 ג) c c 0 ד). א( ) ( ) ( ב) c d d c 6 ג) 6 ד) mn n n m m. א) 0 ב) ג( 6 ד( 6. א) 6 ב ( 6 ג) 0 ד) 0 אשונ. III. םיירבגלא םירבש רוסיחו רוביח. :רשפאה תדימב םצמצ,םיאבה םירבשה תא רסחו רבח,הבצהה םוחת תא ןייצ c c c 8. ) ( אשונ.םיירבגלא םירבש קוליחו לפכ.IV. ; : 6. :. ; : m m m m m 8. ; :.. ;. :

3 ףסוי תמר טרוא ב"טח.הנושאר הלעממ האוושמ.V אשונ תואוושמה תא רותפ :.. ) )( ( הנושאר הלעממ תואוושמ תכרעמ. VI אשונ :תואוושמה לש תוכרעמ תא רותפ תיעוביר האוושמ.VII אשונ תא ןייצ,תואוושמה תא רותפ :הבצהה םוחת ) (

4 ףסוי תמר טרוא ב"טח אשונ IVVV.הינש הלעממ תואוושמ תכרעמ

5 פרק ב' פונקציה..

6 .. לפניכם שלוש הצגות של הפונקציה :f() הצגה מוזזת הצגה כמכפלה הצגה סטנדרטית f() = 6 f() = ( + )( ) f() = ( ) 8 הראו כי שלוש ההצגות מתארות אותה הפונקציה. א. הסתמכו על המידע הנתון בשלוש ההצגות, ומצאו את: ב. שיעורי נקודות החיתוך עם הצירים - משוואת ציר הסימטריה - שיעורי נקודת הקדקוד. - שרטטו סקיצה של הגרף של,f() וסמנו בה את הנקודות שמצאתם בסעיף הקודם. 6

7 . אורך החיים של כלבים הוא בסביבות שנים. לכן כלב בן, למשל, נחשב לזקן. הקשר בין הגיל של כלב לבין הגיל המקביל של האדם תלוי בגודל הכלב. אצל כלבים קטנים )במשקל 0 ק"ג(, ההתאמה בין גיל הכלב לגיל האדם מתאים לאותו שלב התפתחות מתנהגת, בערך, לפי הפונקציה + f() = כאשר מייצג את גיל הכלב )בשנים רגילות(, ו-( f( מייצג את גיל האדם המתאים לאותו שלב. אצל כלבים גדולים )במשקל מעל ק"ג(, ההתאמה בין גיל הכלב לגיל המקביל של אדם מתנהגת, בערך, לפי הפונקציה g() 6 דוגמה: כלב קטן בן נמצא בשלב התפתחותי בחייו המתאים לאדם בן כי += =. f() א. השלימו את הטבלה עבור גילים המתאימים לכלבים קטנים. גיל כלב קטן 0 6 גיל אדם 7 ב. השלימו את הטבלה עבור גילים המתאימים לכלבים גדולים. גיל כלב גדול 0 6 גיל אדם 6 ג. לפניכם סקיצה של הגרפים המתאימים ל- f() ול-( g(. התאימו גרף לכל פונקציה. א גיל ד. מהם שיעורי נקודת החיתוך בין שני הגרפים? מה מתארת נקודה זו? ה. מצאו (0)f, (0)g. מה משמעות המספרים שקיבלתם? ו. מצאו עבור אילו ערכים של מתקיים:( f( g() > מה משמעות התוצאה שקיבלתם? הגיל בשנים רגילות ז. מצאו עבור איזה ערך של מתקיימים השוויונות הבאים: = f() (i) מה משמעות התוצאות שקיבלתם? (ii) g() 6 ח. הוסיפו סימן סדר מתאים )<, < או =(. f(0) g(0) )ii( f() g() )i( 7

8 ג. ד. ב.. נתונות הפונקציות: = ( + ) ) = ( ) ) = ) א. ב. ג. ד. ה. סרטטו את הגרפים של שלוש הפונקציות באותה מערכת צירים. מהם צירי הסימטריה של כל אחת מהפונקציות? מהם שיעורי הקדקוד של כל אחת מהפונקציות? כיצד אפשר לקבל על ידי הזזה אחת את גרף פונקציה )( מגרף פונקציה )(? כיצד אפשר לקבל על ידי הזזה אחת את גרף פונקציה )( מגרף פונקציה )(? 6. בכל סעיף נתון מידע על פרבולה ונתונים ייצוגים אלגבריים של פונקציות ריבועיות. אילו מהייצוגים מתאימים למידע הנתון? שיעור ה- של הקדקוד הוא שיעורי הקדקוד )0, (.א = = = ( ) = ( + ) = ( + ) = ( ) ציר הסימטריה = = = ( ) = ( ) ציר הסימטריה עובר בנקודה ), ( = = ( + ) + = +.7 8

9 .8..0

10 .. 0

11 פרק ג' גיאומטריה. נושא I.חפיפת משולשים.

12

13

14 נושא II.משולש שווה שוקיים.

15 נושא III.משולש ישר זווית שבו זווית בת 0. נושא IV.תיכון ליתר במשולש ישר זווית.

16 המשולשים שלפניך הם ישרי זווית והקטע שעובר בתוכם הוא התיכון ליתר.מצא את הזויות המסומנות במספרים:. נושא V.מקבילית,מלבן,מעוין,ריבוע. 6

17 7

18 נושא. VI טרפז. קטע אמצעים בטרפז ובמשולש. 8

19 תרגול מסכם בכל הנושאים א. פונקציות. נתונות שתי פונקציות ריבועיות: f() = ( ) + g() = ( + ) כתבו את הביטוי האלגברי של הקו הישר העובר בין נקודות הקדקוד של שתי הפונקציות. נתונות הפונקציות הריבועיות: f() = ( + ) g() = f() + ומשורטט הגרף של.f(). א. חשבו את ( )g ב. מהם השיעורים של נקודת הקדקוד של הפונקציה g? f()

20 נתונה הפונקציה ) f() = ( )( א. מהו שיעור ה- של נקודת הקדקוד של הפונקציה? ב. כתבו פונקציה אחרת,,g() שנקודות החיתוך שלה עם ציר ה- זהות לאילו של הפונקציה f ונקודת הקדקוד שלה היא נקודת מינימום.. נתונה הפונקציה: ) + ( f() = א. תנו דוגמה של פונקציה קבועה שחותכת את גרף הפונקציה f בשתי נקודות. ב. רשמו את שתי נקודות החיתוך של הפונקציה הריבועית f והפונקציה הקבועה.. א. חשבו את נקודות החיתוך של שתי הפונקציות: g() = ( + ) + ו- f() = ( + ) ב. קבעו באיזה תחום g() f() <. 0

21 א. חשבו את נקודות החיתוך של שתי הפונקציות: g() = + ו- f() = + ב. קבעו באיזה תחום g() f() >.6 נתונה הפונקציה + f() = א. חשבו את שיעור ה- של נקודת הקדקוד. 7 : f( ) מצאו את f( ב. נתון ) 8 נמקו. f( ).7 ג. נקודות החיתוך של הפונקציה עם ציר נמצאות: )סמנו את התשובה הנכונה( בחלק החיובי של ציר i..ii נקודה אחת בראשית הצירים והשנייה בחלק החיובי של הציר.iii נקודת אחת בחלק החיובי של ציר ונקודה אחת בחלק השלילי של הציר בחלק השלילי של ציר.iv א. לפונקציות: = 6 ו- = + 6 נכון / לא נכון )סמנו את התשובה הנכונה( ונמקו. אותן נקודות חיתוך עם ציר..8 ב. לפונקציות: = ו- ) + 8 ( = אותה נקודת חיתוך עם ציר. נכון / לא נכון )סמנו את התשובה הנכונה( ונמקו.

22 נתונה הפונקציה ) + )( = ( א. מהן נקודות החיתוך של הפונקציה עם ציר? ב. כתבו את התחום בו הפונקציה עולה. ג. כתבו את משוואת הפונקציה הקווית העוברת דרך קדקוד הפונקציה הריבועית הנתונה ואחת מנקודת החיתוך שלה עם ציר ה-.. ב. טכניקה אלגברית. נמקו מדוע למשוואה שלפניכם אין פתרון נתונה המשוואה: 6 א. הסבירו מדוע הפתרונות של המשוואה המקורית זהים לפתרונות של המשוואה הבאה: 6 ( )( ) 6. ב. פתרו את המשוואה. נתונה המשוואה = 0 ( + הוא פרמטר(. מה צריך להיות הערך של כך שלמשוואה יהיה פתרון ממשי יחיד? נמקו.. ( ) ( ) נתון האי-שוויון א. סמנו את האי-שוויון השקול לאי שוויון הנתון ( ).ii.iv ( ) ( ).i.iii. ב. פתרו את האי-שוויון.

23 נתונה מערכת המשוואות: 6 8 הסבירו מדוע יש למערכת המשוואות רק פתרון יחיד.. נתונה מערכת המשוואות: 0 עמית התחיל לפתור כך: = ( + ) = 8 המשיכו את דרך הפתרון של עמית, או בחרו בדרך אחרת לפתור פשטו את הביטוי, רשמו את תחום ההצבה..7 א. פתרו את התרגילים, כתבו את התוצאה בכתיב מדעי: ב. = במשולש ישר זווית ניצב אחד ארוך ב- ס"מ מניצב שני. אורך היתר הוא 6 ס"מ. חשבו את היקף המשולש.. 0.א. פתרו את המשוואה = 0 ) ( ( ) ב. כתבו משוואה שיש לה שני פתרונות שהם נגדיים זה לזה. ( ).פתרו את המשוואה:

24 ג. שאלות מילוליות. רכבת עוברת בכל יום מרחק של 00 ק"מ במהירות קבועה. באחד הימים הגדילה את מהירותה ב- 0 קמ"ש ובאותו היום עברה את המרחק בחצי שעה פחות מהזמן ביום רגיל. מצאו את מהירותה של הרכבת ביום רגיל. שטחו של משולש 0 סמ"ר. אם נגדיל צלע של המשולש ב- % ואת הגובה לצלע זו נאריך ב- ס"מ, יהיה שטח המשולש סמ"ר. מצאו את אורך הצלע ואת אורך הגובה אליה.. X מ' 0 מ' X מ' על חלקת אדמה אשר ממדיה הם 0 מ' 0X מ' רוצים לנטוע בוסתן עם עצי פרי שצורתו מלבנית וצמודה לפינה, כמתואר באיור. שטח הבוסתן צריך להיות משטח החלקה כולה. רוחב השבילים הצדדיים צריך להיות שווה. מהם ממדי הבוסתן?. 0 מ' ד. הסתברות. בקופסה מונחים מפתחות, ורק אחד מהם מתאים לדלת. מוציאים מהקופסה מפתח באקראי. אם הוא אינו מתאים לדלת, מוציאים מפתח אחר מבלי להחזיר את המפתח הראשון. א. מה ההסתברות שהמפתח הראשון שמוציאים יהיה המפתח המתאים לדלת? ב. מה ההסתברות שהמפתח השני יתאים אם ידוע שהמפתח הראשון אינו מתאים? בארגז אשר במחסן יש נורות. מחצית הנורות הן מתוצרת הארץ ומחצית הנורות הן מתוצרת חוץ. מבין הנורות מתוצאת הארץ יש הסתברות של % שהנורה פגומה. מבין הנורות מתוצרת חוץ יש הסתברות של % שהנורה פגומה. בוחרים באקראי נורה אחת מתוך הארגז.. א. מה ההסתברות שהנורה שנבחרה היא פגומה מתוצרת הארץ? ב. מה ההסתברות לבחור נורה תקינה?

25 ו. אוריינות מאותו מקום על גדת הנהר יצאו רפסודה וסירה עם מנוע ליעד שמרחקו 0 ק"מ בשעה 8:00. הם שטו עם הזרם שמהירותו הקבועה הייתה 0 קמ"ש. בשעה :0 יצא אופנוע ים גם הוא מאותו המקום ולאותו יעד. היעזרו בגרף המצורף כדי לענות על השאלות הבאות: מרחק בק"מ. סירה עם מנוע אופנוע ים רפסודה זמן בשעות א. ב. המהירות של הסירה עם המנוע )ללא מהירות הזרם( הייתה קמ"ש. התייחסו לטענות הבאות: טענה ברגע שעקף האופנוע את הרפסודה המרחק מהרפסודה לסירה היה כמו המרחק בין הרפסודה לאופנוע שעה וחצי לאחר העקיפה שעה לאחר שעקף האופנוע את הסירה הגיע האופנוע ליעד חצי שעה לאחר שעקף האופנוע את הרפסודה מרחק האופנוע מהרפסודה היה גדול ממרחק האופנוע מהסירה חשבו באיזו שעה תגיע הרפסודה אל היעד. נכון / לא נכון נכון / לא נכון נכון / לא נכון נכון / לא נכון.i.ii.iii ג.

26 מרצפים אולם אירועים במרצפות גדולות הצבועות באפור ולבן. )האיור הוא של מרצפת אחת ראו איור (. כל מרצפת היא ריבועית וגודלה מ"ר, החלוקה של המרצפת יוצרת צורות ריבועיות.. א. איזה חלק מכל מרצפת צבוע באפור? איור ב. מצמידים מרצפות זו לזו כך שהחלקים הלבנים ביחד יוצרים מלבנים וריבוע. )ראו איור ( מה השטח של הריבוע הלבן הפנימי )המסומן באיור בקו עבה יותר(? איור ג. המידות של אולם האירועים הן 6 מ' 7. X מ'. לכל היותר, בכמה מרצפות שלמות יכולים להשתמש? )ידוע שיזדקקו גם לחתוך מרצפות להשלמת הריצוף(. 6

27 ה. גאומטריה. לפניכם סעיפים. על כל אחד מהם ענו נכון/לא נכון ונמקו בקצרה )משפט( א( קיים משולש שווה שוקיים שזווית הראש שלו גדולה פי 6 מזווית הבסיס. נכון / לא נכון נמקו בקצרה ב( תיכון במשולש שווה שוקיים הוא גם חוצה זווית. נכון תמיד / לא נכון תמיד נמקו בקצרה כתבו תכנית בנייה לבניית משולש שווה שוקיים על פי הגובה לבסיס וזווית הראש. הצדיקו מדוע הבנייה תהיה נכונה.. A B. בטרפז שווה שוקיים (AB CD) ABCD EF קטע אמצעים. E F ס"מ = EF היקף משולש ACD גדול ב- 8 ס"מ מהיקף D C משולש.ABC חשבו את אורכי הבסיסים של הטרפז. נמקו. A B הקטע ABCD במלבן B הוא חוצה זווית BE. ס"מ =,BE ס"מ = DE D E C חשבו את היקף המלבן. נמקו. A E F B המרובע ABCD הוא ריבוע.. נתון: G T FT EC,EC AH הנקודות G F, E, הן אמצעי הצלעות AH,EB,AB בהתאמה. הוכיחו: DG = FT D H C 7

28 A D F E B G המרובע ABCD הוא טרפז ישר זווית ( AB ) A = 0,CD E ו- F הן נקודות על הצלעות DC ו- AB בהתאמה. נתון: DF EB C EB BC הנקודה G היא אמצע הקטע EC הוכיחו: א. AFD BEC ב. BE חוצה זווית ABG.6 E A F משולש ABC הוא משולש שווה צלעות. נתון: A חוצה זווית AD EF קטע אמצעים במשולש הוכיחו: BF ED.7 B D C B O C המרובע ABCD הוא מעוין. משולש ABD הוא משולש שווה שצלעות הנקודה E על המשך האלכסון DB כך ש DE = DB א. הוכיחו BC CE ב. נתון ס"מ =.BO חשבו את האורך של.CE.8 A D A E במשולש BG AC,ABC BGC במשולש BC תיכון לצלע GE. D G DGB = EGB כך שמתקיים AB נקודה על D הוכיחו: א. DG BC ב. ADG ABC B E C 8

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) 5 עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי 5

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) - עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לכל תלמידי

קרא עוד

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)

עבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות) עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי יחידות

קרא עוד

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc

Microsoft Word - עבודת פסח לכיתה י 5 יחל.doc עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים

קרא עוד

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc

סט נובמבר 08 מועד מיוחד - פתרונות עפר.doc נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y

קרא עוד

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C

1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C 8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות

קרא עוד

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי  שכונה מערבית, רח' הפסגה 17 כרמיאל דואל: עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30

קרא עוד

ע 003 מרץ 10 מועד מיוחד פתרונות עפר

ע 003 מרץ 10 מועד מיוחד פתרונות עפר בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר

קרא עוד

פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -

פסגות עש ברוך ונגר בית ספר על יסודי מקיף ומכללה - פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים

קרא עוד

Microsoft Word - 38

Microsoft Word - 38 08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60

קרא עוד

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר

יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את

קרא עוד

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,

בגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, ,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא

קרא עוד

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף

א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון

קרא עוד

מתמטיקה לכיתה ט פונקציה ריבועית

מתמטיקה לכיתה ט פונקציה ריבועית מתמטיקה לכיתה ט פונקציה ריבועית צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת

קרא עוד

עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות

עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יחל פסח תשעה יש לפתור את כל השאלות עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו

קרא עוד

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י

עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

קרא עוד

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ

טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.

קרא עוד

HaredimZ2.indb

HaredimZ2.indb יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

קרא עוד

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>

<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63> 1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $

קרא עוד

ע 001 ינואר 10 מועד חורף פתרונות עפר

ע 001 ינואר 10 מועד חורף פתרונות עפר בגרות ע 00 ינואר 0 שאלון 50 הציר האופקי, ציר ה-, x מתאר את הזמן שעובר, בשניות, מתחילת השחייה כל משבצת היא בת 0 שניות הציר האנכי, ציר ה - y, מתאר את המרחק מקצה הבר כה כל משבצת היא בת 0 מטר כאשר הקו עולה

קרא עוד

mivhanim 002 horef 2012

mivhanim 002 horef 2012 מבחן מספר 1 (שאלון 00 חורף תשע"ב) בשאלון זה שש שאלות. תשובה מלאה לשאלה מזכה ב- 5 נקודות. מותר לך לענות, באופן מלא או חלקי, על מספר שאלות כרצונך, אך סך הנקודות שתוכל לצבור לא יעלה על. 100 אלגברה (x+ 5)

קרא עוד

Microsoft Word - hedva 806-pitronot-2011.doc

Microsoft Word - hedva 806-pitronot-2011.doc ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על

קרא עוד

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ

שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם

קרא עוד

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>

<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63> < 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות

קרא עוד

Microsoft Word - beayot tnua 3 pitronot.doc

Microsoft Word - beayot tnua 3 pitronot.doc ק( בעיות מילוליות - בעיות תנועה.7 פתרון: א. נסמן : קמ"ש קמ"ש מהירותו של הולך הרגל. מהירותו של רוכב האופניים. משך זמן הליכתו של הולך הרגל מקיבוץ א' לקיבוץ ב'. משך זמן רכיבתו של רוכב האופניים מקיבוץ א' לקיבוץ

קרא עוד

בחינה מספר 1

בחינה מספר 1 תוכן העניינים בחינה מספר 1 4 אלגברה: 4 חשבון דיפרנציאלי ואינטגרלי: בחינה מספר 6 אלגברה: 6 חשבון דיפרנציאלי ואינטגרלי: 7 בחינה מספר 3 8 אלגברה: 8 חשבון דיפרנציאלי ואינטגרלי: 9 בחינה מספר 41 אלגברה: 01 חשבון

קרא עוד

Microsoft Word - solutions.doc

Microsoft Word - solutions.doc תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה

קרא עוד

Microsoft Word פרק 16 - פתרון משוואות רמה א

Microsoft Word פרק 16 - פתרון משוואות רמה א 0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.

קרא עוד

Microsoft Word - 14

Microsoft Word - 14 9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את

קרא עוד

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה

תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 סמ, כמו כן אחת מצלעות המקבילית שווה ל- 8 סמ. מהו גודלה של שאר צלעות המקבילית בסמ?.1 8 נתונה תרגול מרובעים- מקבילית נתונה מקבילית בעלת היקף בגודל 33 ס"מ, כמו כן אחת מצלעות המקבילית שווה ל- 8 ס"מ. מהו גודלה של שאר צלעות המקבילית בס"מ?.1 8 נתונה מקבילית שצלעותיה שוות ל- 3 ס"מ ול- 7 ס"מ. מהו הטווח

קרא עוד

08-78-(2004)

08-78-(2004) שאלון 00 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן

קרא עוד

עב 001 ינואר 12 מועד חורף פתרונות עפר

עב 001 ינואר 12 מועד חורף פתרונות עפר ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית

קרא עוד

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי

מקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יחל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא

קרא עוד

Limit

Limit פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:

קרא עוד

סז 002 נואר 07 מועד חורף פתרונות עפר

סז 002 נואר 07 מועד חורף פתרונות עפר הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות

קרא עוד

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים

אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,65 באר-שבעISRAEL 058P.O.B. 65, BEER SHEVA 8 05, המזכירות האקדמית המרכז ללימודים קדם אקדמיים אלגברה - נוסחאות הכפל מקוצר גיליון תרגילים מס'

קרא עוד

îáçï îúëåðú îñ' 1

îáçï îúëåðú îñ'  1 5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä

קרא עוד

במתמטיקה בגרויות + פתרונות וידאו מלאים (3 יח ל שאלון 182/183) וידאו מלאים לכל השאלות בחוברת ב- MY.GEVA.CO.IL פתרונות הבחינות הראשונות במתנה! שתי אפליק

במתמטיקה בגרויות + פתרונות וידאו מלאים (3 יח ל שאלון 182/183) וידאו מלאים לכל השאלות בחוברת ב- MY.GEVA.CO.IL פתרונות הבחינות הראשונות במתנה! שתי אפליק במתמטיקה בגרויות + פתרונות וידאו מלאים ( יח ל שאלון 8/8) וידאו מלאים לכל השאלות בחוברת ב- MYGEVACOIL פתרונות הבחינות הראשונות במתנה! שתי אפליקציית MYGEVA חדש! אותי מאחור חפשו לשנת 08-09 עדכני הקדמה מורים

קרא עוד

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו

פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו

קרא עוד

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק

2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור

קרא עוד

פונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי

פונקציה מסדר ראשון;  הגדרת קו ישר: - הצגה עי ביטוי אלגברי וגרפי המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה

קרא עוד

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>

<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63> הסברים לפרק כמותי : :úåðåëðä úåáåùúä 0 9 8 7 6 5 5 0 9 8 7 6 5. התשובה הנכונה היא: (). עלינו לקבוע איזה מהביטויים שבתשובות אינו זוגי. משום שהשאלה עוסקת בתכונת הזוגיות, ננסה ללמוד מהנתון על זוגיותם של x

קרא עוד

rizufim answers

rizufim answers ÌÈÙÂˆÈ מדריך למורה פעילות זו היא פעילות חקר לבדיקת כל אפשרויות הריצוף שבהן סידור מצולעים סביב קודקוד הוא זהה. המצולעים שבהם ישתמשו התלמידים הם: משולש שווה צלעות, משושה משוכלל וריבוע - כולם בעלי צלע באותו

קרא עוד

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים כיתה

שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים   כיתה שם כיף עם ג'ף מאגר פעילויות חלק א' חוברת של פעילויות מתמטיות: העשרה, העמקה, משחקים ואתגרים www.kefwithjeff.org כיתה Happy New Year 8 0 80 80 0 8 8 8 8 8 08 8 0 0 בכל שורה ובכל טור יש את המספרים עד כולל.

קרא עוד

אי שוויונים ממעלה ראשונה לארבע יחידות

אי שוויונים ממעלה ראשונה לארבע יחידות אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.

קרא עוד

מבוא ללוגיקה ולתורת הקבוצות

מבוא ללוגיקה ולתורת הקבוצות תורת הקבוצות מושגים בסיסיים מבוא ללוגיקה ולתורת הקבוצות חוברת תרגילים כתוב באופן מפורש את הקבוצות הבאות: 5 2x + 3< היא קבוצת המספרים השלמים המקיימים : 7 B היא קבוצת האותיות הקודמות לאות f באלף-בית הלטיני.

קרא עוד

תאריך הבחינה 30

תאריך הבחינה   30 אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א

קרא עוד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד

פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:

קרא עוד

מתמטיקה של מערכות

מתמטיקה של מערכות מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות

קרא עוד

תרגול 1

תרגול 1 תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת

קרא עוד

Microsoft Word - shedva_2011

Microsoft Word - shedva_2011 שיטות דיפרנציאליות ואינטגרליות הפקולטה להנדסה אוניברסיטת תל אביב גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה

קרא עוד

Microsoft Word - 28

Microsoft Word - 28 8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת

קרא עוד

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ

. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ . [,] ו 0 f() f() עמוד מתוך 6 ז. אולחא מס' הקורס 97 חדו''א הנ מכונות f ( ) ( )( )( ) f (,), תשובות I ) פונ' לכן קיים פתרון רציפה וגזירה בקטע כך ש 0 ) (? f ( ) +, ± ± 0.58 (, ),.58,.4 יש n פעמים להשתמש

קרא עוד

א. מערכות צירים א. 1. מערכת צירים - זוגות סדורים ושיעורים מגלים לומדים 10. פונקציות מגלים ולומדים במערכת הרחובות ברובע מנהטן בניו-יורק יש שני סוגים של

א. מערכות צירים א. 1. מערכת צירים - זוגות סדורים ושיעורים מגלים לומדים 10. פונקציות מגלים ולומדים במערכת הרחובות ברובע מנהטן בניו-יורק יש שני סוגים של א. מערכות צירים א.. מערכת צירים - זוגות סדורים ושיעורים מגלים לומדים. פונקציות במערכת הרחובות ברובע מנהטן בניו-יורק יש שני סוגים של רחובות: שדרות בכיוון מאונך ויותר מ- רחובות בכיוון מאוזן. ראו דוגמה. לרחובות

קרא עוד

Microsoft Word - dvar hamaarehet_4.8.docx

Microsoft Word - dvar hamaarehet_4.8.docx מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם

קרא עוד

ðñôç 005 î

ðñôç 005 î ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,

קרא עוד

Microsoft Word - 01 difernziali razionalit

Microsoft Word - 01 difernziali razionalit פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות

קרא עוד

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות

תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: כל הזכויות שמורות תיק משימטיקה מגרף הנגזרת לגרף הפונקציה להנגשה פרטנית נא לפנות: st.negishut@weizmann.ac.il תוכן העניינים מטרות התיק... 3 זמני עבודה משוערים... 3 החומרים והעזרים הדרושים... 4 רקע... 5 הצעה למהלך העבודה...

קרא עוד

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב

דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של

קרא עוד

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63>

<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63> מתמטיקה א' לכלכלנים גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים

קרא עוד

<4D F736F F D20EBE9FAE420E7202D20E0E7E5E6E9ED202D20E3F4E920F1E9EBE5ED20ECFAECEEE9E3E9ED D20F8EEE420E0202D20E8E5F4F120382D332

<4D F736F F D20EBE9FAE420E7202D20E0E7E5E6E9ED202D20E3F4E920F1E9EBE5ED20ECFAECEEE9E3E9ED D20F8EEE420E0202D20E8E5F4F120382D332 דף עבודה אחוזים באילו מהאיורים הבאים החלק הצבוע מהווה אותו אחוז מהם? מהו גודלו החלק ואיזה אחוז הוא מהווה מהם? (1) (ה) התבוappleappleו באיור משמאל. רשמו איזה חלק מהווה החלק הצבוע בשבר פשוט ובכתיב אחוזים.

קרא עוד

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L

תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,

קרא עוד

מספר בקשה 3f40e793 6b a0e9 da8f5a75fe53 פרטי המוצרים שלי

מספר בקשה 3f40e793 6b a0e9 da8f5a75fe53 פרטי המוצרים שלי מספר בקשה 3f40e793 6b11 4127 a0e9 da8f5a75fe53 פרטי המוצרים שלי 68 270 224092 70 68 270 224092 69 3967487 3967486 3966858 3966275 3957822 1634818 סוג מוצר פנסיוני פוליסת ביטוח חיים משולב חיסכון קרן השתלמות

קרא עוד

תוצאות סופיות מבחן אלק' פיקוד ובקרה קיץ 2014

תוצאות סופיות מבחן  אלק' פיקוד ובקרה קיץ  2014 תוצאות סופיות למערכות אלק' פיקוד ובקרה להנדסאים וטכנאים מועד קיץ תשע"ד 7/2014 פותר המבחן: מתי דוד למרות מאמצי לפתור נכון, יתכן ונפלו טעויות בפתרון, אשמח לקבל הערותיכם בדוא"ל : @hotmail.com ההצלחה שלי היא

קרא עוד

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>

<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63> משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת

קרא עוד

Microsoft Word - beayot hespek 4 pitronot.doc

Microsoft Word - beayot hespek 4 pitronot.doc בעיות מילוליות - בעיות הספק.6 פתרון: נסמן: מספר המכשירים שתיקן טכנאי א' בשעה אחת (קצב עבודתו). ( ) כל אחד מהטכנאים תיקן מספר המכשירים שתיקן טכנאי ב' בשעה אחת (קצב עבודתו). 0 מכשירים, לכן: 0 שעות משך זמן

קרא עוד

Microsoft Word - Sol_Moedb10-1-2,4

Microsoft Word - Sol_Moedb10-1-2,4 הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל

קרא עוד

מבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים

מבנים בדידים וקומבינטוריקה סמסטר אביב תשעט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t

קרא עוד

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0

תכנון אלגוריתמים עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 02: , בצהריים,תא מספר 66 בקומת כניסה של בניין 003 מתרגל אחראי: אורי 0 22 עבודת בית 4: תכנון אלגוריתמים תאריך הגשה: 2: 622, בצהריים,תא מספר 66 בקומת כניסה של בניין 3 מתרגל אחראי: אורי הוראות כלליות: כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות: תיאור

קרא עוד

Microsoft Word - אלגברה מעורב 2.doc

Microsoft Word - אלגברה מעורב 2.doc תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz

קרא עוד

הסבר: מחיר ק"ג תפוזים הוא 7 שקלים.. אמהי העלות של 2 ק"ג תפוזים?. במהי העלות של 3 ק"ג תפוזים?. גמהי העלות של 10 ק"ג תפוזים?. דמהי הע

הסבר: מחיר קג תפוזים הוא 7 שקלים.. אמהי העלות של 2 קג תפוזים?. במהי העלות של 3 קג תפוזים?. גמהי העלות של 10 קג תפוזים?. דמהי הע הסבר: מחיר ק"ג תפוזים הוא 7 שקלים.. אמהי העלות של 2 ק"ג תפוזים. במהי העלות של ק"ג תפוזים. גמהי העלות של 10 ק"ג תפוזים. דמהי העלות של 50 ק"ג תפוזים. המהי העלות של a ק"ג תפוזים -1- המשתנה משתנים וביטויים

קרא עוד

מתמטיקה לכיתה ח פונקציה קווית חלק ב מערכות משוואות הרחבה

מתמטיקה לכיתה ח פונקציה קווית חלק ב מערכות משוואות הרחבה מתמטיקה לכיתה ח פונקציה קווית חלק ב מערכות משוואות הרחבה צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו,

קרא עוד

סדרה חשבונית והנדסית

סדרה חשבונית והנדסית .2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.

קרא עוד

התפלגות נורמלית מחודש

התפלגות נורמלית מחודש התפלגות נורמלית בקובץ זה מופיעות שאלות בנושא התפלגות נורמלית שמחליפות את שאלות המאגר ותוספותיו, הקיימות עד כה שאלות אלה יכולות להיפתר מבלי להמיר את ערכי המשתנה לציוני תקן, ומבלי להשתמש בטבלת ההתפלגות הנורמלית

קרא עוד

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y

! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y !! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) tan ( a a z 0 a z s ds dt (רמז: cos d d ז) d ( ) d ( ) ח) ) מצא את הפתרונות המקיימי :. () 0 ( ). (). () 0 d ( ) d ( ) π. sin ln ) tan cos d cos d

קרא עוד

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה

תכנון אלגוריתמים, אביב 1021, תרגול מס' 4 תכנון דינאמי תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (16.1.(CLR ראשית נראה דוגמא: דוגמא: תהינה תכנון דינאמי בתרגול זה נדון בבעיית הכפלת סדרת מטריצות (6..(CLR ראשית נראה דוגמא: דוגמא: תהינה ארבע מטריצות:. A, A, A, A נסמן את גודל המטריצות בסדרה ע"י סדרת גדלים כאשר, p 5 5 p היא בגודל A {,,,5,}, P כלומר

קרא עוד

מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4

מבחן חוזר במכניקה 55 א יא יחללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4 מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19

קרא עוד

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0

פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0 פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות

קרא עוד

ניסוי 4 מעגל גילוי אור והפעלת נורה מטרות הניסוי שילוב נגד רגיש לאור (LDR) ודפ"א (LED) להפעלתה מתחת לרמת אור מסוימת. שילוב פוטו דיודה לגילוי אור והפעלת

ניסוי 4 מעגל גילוי אור והפעלת נורה מטרות הניסוי שילוב נגד רגיש לאור (LDR) ודפא (LED) להפעלתה מתחת לרמת אור מסוימת. שילוב פוטו דיודה לגילוי אור והפעלת ניסוי 4 מעגל גילוי אור והפעלת נורה מטרות הניסוי שילוב נגד רגיש לאור (LDR) ודפ"א (LED) להפעלתה מתחת לרמת אור מסוימת. שילוב פוטו דיודה לגילוי אור והפעלת.LED מדידת מתחים וזרמים בטרנזיסטור, וזיהוי מצב הפעולה

קרא עוד

Microsoft Word - ExamA_Final_Solution.docx

Microsoft Word - ExamA_Final_Solution.docx סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד

קרא עוד

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra

תרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות

קרא עוד

Microsoft Word - two_variables3.doc

Microsoft Word - two_variables3.doc משימה שני תלמידים פתרו את מערכת המשוואות הבאה y 7 2y 2. שי פתר בשיטת השוואת מקדמים: I. 2x y 7 II. 2x 2y 2 דנה פתרה בשיטת הצבה: I. 2x y 7 II. 2x 2y 2 I. y = 7 2x II. 2x 2(7 2x) = 2 2x 4 + 4x = 2 6x 4 =

קרא עוד

תשובות 1. משתנה וביטוי אלגברי 1 א פרצוף שמח, פרצוף עצוב וכו'... ב פרצוף שמח. ג - 8 עצוב, - 15 שמח. ד שמח, עצוב. עמ' 2 2 א תכלת. ב 5. ג אי-

תשובות 1. משתנה וביטוי אלגברי 1 א פרצוף שמח, פרצוף עצוב וכו'... ב פרצוף שמח. ג - 8 עצוב, - 15 שמח. ד שמח, עצוב. עמ' 2 2 א תכלת. ב 5. ג אי- 1. משתנה וביטוי אלגברי 1 א פרצוף שמח, פרצוף עצוב וכו'... ב פרצוף שמח. ג - 8 עצוב, - 15 שמח. ד - 567 שמח, - 784 עצוב. עמ' 2 2 א תכלת. ב 5. ג אי-זוגיים. ד זוגיים. ה 10, כתום. א 9. 4, 1, ב מספר המבנה בריבוע.

קרא עוד

בגרות סוג הבחינה: מדינת ישראל קיץ תשע"ח, 2018 מועד הבחינה: משרד החינוך , מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה:

בגרות סוג הבחינה: מדינת ישראל קיץ תשעח, 2018 מועד הבחינה: משרד החינוך , מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יחל נספח: א. משך הבחינה: בגרות סוג הבחינה: מדינת ישראל קיץ תשע"ח, 2018 מועד הבחינה: משרד החינוך 657 036003, מספר השאלון: נוסחאות ונתונים בפיזיקה ל 5 יח"ל נספח: א. משך הבחינה: שעתיים. ב. מבנה השאלון ומפתח ההערכה: פיזיקה קרינה וחומר

קרא עוד

אנליזה מתקדמת

אנליזה מתקדמת א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:

קרא עוד

" תלמידים מלמדים תלמידים."

 תלמידים מלמדים תלמידים. " תלמידים מלמדים תלמידים." פרוייקט של צוות מתמטיקה, בית ספר כפר-הירוק איך הכל התחיל... הנהלת בית הספר העל-יסודי הכפר הירוק יזמה פרויקט בית ספרי: "למידה ללא מבחנים- הוראה משמעותית", צוות המתמטיקה החליט

קרא עוד

אבי סיגלר, רות סגל ומשה סטופל תכונות גאומטריות מפתיעות המתקבלות לאחר הפיכתו של מרובע כלשהו לסריג תקציר המאמר מציג חקר תכונות מעניינות שקיימות במרובע ק

אבי סיגלר, רות סגל ומשה סטופל תכונות גאומטריות מפתיעות המתקבלות לאחר הפיכתו של מרובע כלשהו לסריג תקציר המאמר מציג חקר תכונות מעניינות שקיימות במרובע ק תכונות גאומטריות מפתיעות המתקבלות לאחר הפיכתו של מרובע כלשהו לסריג תקציר המאמר מציג חקר תכונות מעניינות שקיימות במרובע קמור כלשהו עם התפתחותו לסריג בעל שורות ועמודות המורכבות מתת-מרובעים. התכונות המיוחדות

קרא עוד

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב'

אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה פרופ' מתיא כץ, דר עופר נימן, דר סטוארט סמית, דר נתן רובין, גב' אוניברסיטת בן-גוריון המחלקה למדעי המחשב בוחן במבנים בדידים וקומבינטוריקה 0-- פרופ' מתיא כ"ץ, ד"ר עופר נימן, ד"ר סטוארט סמית, ד"ר נתן רובין, גב' יעל שטיין טל באומל, לילך חייטמן-ירושלמי, נתי פטר, ד ר סטוארט

קרא עוד

חלק א' – הקדמה

חלק א' – הקדמה ספרות עזר: סירס-זימנסקי/פיסיקה תיכונית, קול וחום, פרקים ו- ; 3 חשמל ומגנטיות א', 5.8 Resnick & Halliday /Physics, part I,.4 Sears & Zemansky /Univesity Physics, 15.1, 16.6, 17.10, 8.8-8.9.1..3 מבוא מצבי

קרא עוד

מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ ÈÓˆÚ Â Ú ÂÁ

מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ ÈÓˆÚ Â Ú ÂÁ מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ ÈÓˆÚ Â Ú ÂÁ מתמטיקה לחטיבת הביניים ÌÈappleÂÂÎÓ ÌÈ ÙÒÓ ÂÏÂÚÙ È ÂÁÂ תוכן העניינים א. מספרים מכוונים על ציר המספרים................. ב. השוואת מספרים

קרא עוד

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור

הטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(

קרא עוד

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ

לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' (.Ⅰ -28- לדרך... מה נלמד? תרגילים חיבור מספרים מכוונים נלמד את כללי החיבור של מספרים מכוונים. )תשובות לתרגילים בפרק זה-בעמ' 107-105(.Ⅰ 5 656 הסבר נדב יצא מביתו )נקודה (, צעד 5 ק"מ לכיוון מזרח, והגיע למסעדה

קרא עוד

פרויקט "רמזור" של קרן אביטל בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו

פרויקט רמזור של קרן אביטל בס ד מערך שיעור בנושא: פונקציה טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנו בס "ד מערך שיעור בנושא: "פונקציה" טליה קיפניס והדסה ערמי, מאולפנת צביה פרטים מקדימים על מערך השיעור: השיעור מהווה מבוא לנושא הפונקציות הנלמד בכתה ט' בכל הרמות. עזרי ההוראה בהם נשתמש: מחשב, ברקו, דפי עבודה

קרא עוד

אשכול: מדעים וחברה לכיתה י'

אשכול: מדעים וחברה לכיתה י' אשכול מדעים וחברה כיתה י' אשכול זה מהווה אשכול כניסה לתכנית של החטיבה העליונה. בהתאם לכך, הדגש המושם בו הוא שימור של הידע הרלוונטי מחטיבת הביניים. באשכול זה נלמדים התכנים המתמטיים בהקשרים של תופעות מתחומי

קרא עוד

Microsoft Word - SDAROT 806 PITRONOT.doc

Microsoft Word - SDAROT 806 PITRONOT.doc 5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את

קרא עוד

מספר נבחן / תשס"ג סמסטר א' מועד א' תאריך: שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר

מספר נבחן / תשסג סמסטר א' מועד א' תאריך: שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: דר אבי אללוף חומר עזר מספר נבחן 2002 2003 / תשס"ג סמסטר א' מועד א' תאריך: 29.1.03 שעה: 13:00 משך הבחינה: 2.5 שעות בחינה בקורס: מבחנים והערכה א' מרצה: ד"ר אבי אללוף חומר עזר: אין שימוש במחשבון: מותר בבחינה 10 עמודים כולל עמוד

קרא עוד

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>

<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3> האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע

קרא עוד

מעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשע"ב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו

מעבדה א' בפיזיקה הענות לתדר ותהודה רקע תאורטי תשעב נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים ו נגד, קבל וסליל במעגלים חשמליים בניסוי זה נחקור את התנהגותם של מעגלים חשמליים המכילים נגדים קבלים וסלילים )משרנים(. ראשית נראה כיצד משפיע כל אחד מהרכיבים הללו על המתח במעגל. נגד חוק אוהם: במהלך לימודיכם

קרא עוד