עב 001 ינואר 12 מועד חורף פתרונות עפר
|
|
- רוני ששון
- לפני5 שנים
- צפיות:
תמליל
1 ק( נסמן ב- את מהירות המשאית שיצאה מעיר A (קמ"ש, קבועה) בגרות עב ינואר מועד חורף שאלון 35 נסמן ב- y את מהירות המכונית שיצאה מעיר B (קמ"ש, קבועה) B A נסמן ב- s את המרחק מעיר לעיר "מ) s v עד מפגש ראשון משאית זמן - t שעות מהירות - קמ"ש דרך-מרחק - ק"מ y 3 y 3 ממפגש ראשון מונית משאית 3 y y עד מפגש שני מונית B s 4 עד 4 ק"מ מעיר s + 4 הלוך ושוב, ועוד 4 y 3 s 4 s + 4 y מיציאה עד מפגש שלישי משאית מונית ק"מ. + y עד המפגש הראשון עברו שני כלי הרכב את כל הדרך: s. y s 4 s+ 4 y מהמפגש הראשון עד המפגש השני עברה המכונית את) (עד עיר A המרחק שעברה המשאית מתחילת התנועה עד המפגש הראשון, וגם את המרחק (מעיר ( A שעברה המשאית מהתחלה עד המפגש השני : הזמנים שעברו שני כלי הרכב מיציאה עד למפגש שלישי, 4 ק"מ מעיר, B שווים () + y s () y + y s 4 s+ 4 (3) y (),(3) s 4 s+ 4.5 /.5.5s s+ 4.5s 4 s (),() y תשובה: מהירות המשאית 4 קמ"ש.
2 א בגרות עב ינואר מועד חורף שאלון 35 א.. נבדוק את נכונות הטענה עבור n a אגף ימין: ) + )( ( + אגף שמאל: אגף שמאל שווה לאגף ימין ולכן הטענה נכונה עבור n n טבעי כלשהו (הנחת האינדוקציה),. נניח את נכונות הטענה עבור k, k kk ( + )(k+ כלומר: ( k + ( k+ )[ + ( k+ )] ( k+ ) ( k+ )[ + ( k+ )] k + כאשר :. n k+ 3. נוכיח שהטענה נכונה עבור נתון כי d a, ולכן צ"ל : k+ k+ ( k+ )( k+ )(( k+ ) + ) kk ( + )(k+ ) + ( k+ ) ( k+ )( k+ )(k+ 3) ( k+ ) [ k(k+ ) + ( k+ ) ] ( k+ )( k+ )(k+ 3) ( k+ )(k + k+ k+ ) ( k+ )( k+ )(k+ 3) ( k+ )(k + 7k+ ) ( k+ )( k+ )(k+3) ( k+ )( k+ )(k+ 3) ( k+ )( k+ )(k+ 3) מתקבל שאגף שמאל שווה לאגף ימין n טבעי כלשהו, 4. בדקנו את נכונות הטענה עבור n, הראינו שאם הטענה נכונה עבור k +k n לכן, על-פי אקסיומת האינדוקציה, הטענה נכונה לכל n טבעי. אז היא נכונה עבור k + 7k+ פרוק הביטוי ע"י משוואה ריבועית: k + 7k+ 7± 3 k, k, 4 3 ( k+ )( k+ ) ( k+ )(k+ 3)
3 ב הסדרה מקיימת לכל n טבעי את כלל הנסיגה: בגרות עב ינואר מועד חורף שאלון 35. b b n n+ bn. b 9 כאשר נתון כי 4.5 b +. b b9 b 9 על פי כלל הנסיגה b9 נסמן: t b, b הרי שגם.5 n+ b n t t t tt ( ) + t 4.5( t ) t t t t t t ±.5 t, t 3 b 3 b.5 9 t.5 b.5 b9 > 9 b קבלנו ש-.5 ומכיוון ונתון כי (למעשה, סדרת האיברים במקומות הזוגיים, או האי זוגיים, בסדרה הנתונה היא קבועה) b תשובה:.5
4 א. נגדיר את המאורעות: בגרות עב ינואר מועד חורף שאלון מבוגרים - צעירים A - הנסקרים A - הצהירו שלא יקנו טלפון חדשני P(B A) P(B/A) P(A)..5 P(A) P(A). B הצהירו שיקנו טלפון חדשני - B נתונים ומשמעויות P(B/A).5 P(B/A).5 P(A/B) P(A/B) 3 3 P(A B). פיתוח נוסחאות הסתברות מותנית P(A B) P(A/B) P(B). 3 P(B) P(B).3 נציב בטבלה ונשלים נתונים A A צעירים מבוגרים B יקנו לא יקנו B.. בסקר השתתפו, איש, כלומר N(), N(A)P(A) N() N(A).,, תשובה:, צעירים השתתפו בסקר. ב. נמצא כמה צעירים, מבין הצעירים שהשתתפו בסקר, הצהירו שיקנו את הטלפון החדשני. P(B A). P(B/A).75 P(A). N(B/A)P(B/A) N(A).75,,, צעירים, מבין הצעירים שהשתתפו בסקר, הצהירו שיקנו את הטלפון החדשני. תשובה:
5 עב ינואר מועד חורף שאלון 35 נתונים DEP BC. 4 BN DM EM BN CN CN צ"ל: ב. א. EM DM BN CN ג., DM EM הסבר מס' טענה נימוק נתון DEP BC משפט תאלס הרחבה DM AM BN AN 3 משפט תאלס הרחבה AM AN EM CN 4 כלל המעבר DM EM BN CN 5 4,3 מ.ש.ל. א משפט תאלס הרחבה משפט תאלס הרחבה EM MF BN FN MF DM FN CN 7 כלל המעבר EM DM BN CN 7, מ.ש.ל. ב חישוב לפי כללי פרופורציה יחס המונים הוא כיחס המכנים DM BN EM CN 9 5 חישוב לפי כללי פרופורציה יחס המונים הוא כיחס המכנים DM CN EM BN כלל מעבר חישוב הצבה וחישוב מ.ש.ל. ג BN CN CN BN BN CN EM DM 3,9,
6 נתונים קוטר במעגל שמרכזו עב ינואר מועד חורף שאלון 35 O O 9. O. P 5. רדיוס המעגל 3 ס"מ משיק למעגל בנקודה BP AF 4.4 AB LF..3 עבור ב: צ"ל: ס"מ א. KLLM ב. 5 מס' טענה נימוק נתון O O O 9 קוטר במעגל שמרכזו נתון זווית היקפית הנשענת על קוטר היא ישרה P APB 9 משיק למעגל בנקודה נתון זוויות צמודות משלימות ל AKO סימון סכום זוויות סכום זוויות KPM זווית בין משיק למיתר שווה לזווית היקפית הנשענת LPM KLP מ.ש.ל. א על המיתר מצידו השני וכלל המעבר כלל המעבר מול זוויות שוות מונחות צלעות שוות הפרש זוויות כלל המעבר מול זוויות שוות מונחות צלעות שוות כלל המעבר KPM 9 PAB α K 9 α KMP α LPM α KMP LPM LP LM KPL 9 α KPL K LP LK KLLM AB LF הסבר 7 3,,,9 4,3 5 4, 7, 9,
7 ונעבור לטריגונומטריה לסעיף ב ס"מ BP (נתון) רדיוס המעגל 3 ס"מ (נתון) ולכן אורך הקוטר ס"מ BA 4 ס"מ AP (משפט פיתגורס BAP ( מציאת ערך α ב - BAP 4 tanα α α FPA 9 (זווית שטוחה משלימה ל ( ) α זווית חיצונית למשולש FAP שווה לסכום שתי זוויות פנימיות שלא צמודות לה) F 44.7 משפט סינוסים FPA AF AP sinfpa sinf AF sin. sin44.7 AF 5.4 תשובה: 5.4 ס"מ AF
8 בגרות עב ינואר מועד חורף שאלון 35 א. () שני המשולשים AKB ו - AFC ישרי זווית., AB (קוטר נשען על זווית היקפית ישרה) r - ו AC לכן R AZ cos α AK : AKZ AZ cos( α+β ) AF : AFZ cosα AF cos( α+β) AK וע"י חילוק המשוואות נקבל AF cos α AK cos( α+β) תשובה: R cos ( α+β) r cos α AK cos α r : AKB () AF cos( α+β ) R : AFC cos( α+β ) AF R cosα AK r וע"י חילוק המשוואות נקבל cos( α+β) cosα R נציב על פי () cosα cos( α+β) r t R cos ( α+β) r cos α תשובה: ב. משפט סינוסים AKF, כאשר רדיוס המעגל החוסם משולש זה. AK t sin(9 α+β ( )) rcos α t cos( α+β) R r t r t R r r > תשובה: רדיוס המעגל החוסם את R יחידות. r הוא AKF
9 א. נתונה הפונקציה בגרות עב ינואר מועד חורף שאלון 35. f( ) () נמצא את תחום ההגדרה, כאשר הביטוי בתוך השורש הוא אי-שלילי והמכנה שונה מ - 7., לכן 4 וגם ובהתאם., 4 תשובה: תחום ההגדרה: () נמצא אסימפטוטות המקבילות לצירים: f ( ) > lim + + lim +,lim + תשובה: אסימפטוטה אנכית: ואין אסימפטוטה אופקית..(,) y ב) נקודת חיתוך עם ציר מתקיים, כי ונקודת החיתוך היא 3) זו גם נקודת החיתוך היחידה עם ציר ה- תשובה: (,). (,) היא נקודת קצה, ולכן תהיה גם נקודת קיצון. (4) f '( ) ( ).5 f '( ) > ( ).5 f '( ) > ( ) ok.. f() 4 (,4)
10 נבנה טבלה לזיהוי תחומי עלייה וירידה, בעזרת ערכי הפונקציה 7 9 f (), f(7) 4., f() f( ) f '( ) Ma מסקנה Min (,4) תשובה: (,) מקסימום, מינימום. (5) הסקיצה המתאימה (כולל סימונים עבור סעיף ב):. f( ), < < ) ( g מוגדרת בתחום ההגדרה של f ( ), f '( ) כלומר כאשר, g'( ) < ב. נתון כי ), g'( ) f( ) f '( כאשר יורדת כאשר שוני סימן. (, )f זה מתקיים עבור g ( ) על פי טבלת עלייה וירידה, וגם הסקיצה של.( f '( ) < כאשר ) f( חיובית, אולם יורדת (כלומר. < < תשובה:
11 a cos א. נתונה הפונקציה sin+ 9 בתחום בגרות עב ינואר מועד חורף שאלון 35 π 7π π 7π. f( ) חיובי לכל sin ולכן הפונקציה מוגדרת בכל התחום כי cos < sin + 9 מכנה הפונקציה חיובי, לכן סימן הפונקציה נקבע על ידי המונה. cos > a < לכן עבור ומכאן שכאשר הפונקציה שלילית, וכאשר הפונקציה חיובית. 7π π a cos d sin + 9 π 7π. < < π π. < < עבור f( ) > f( ) < a > () () ב. נחשב את האינטגרל המסוים נשים לב כי (sin+ 9)' cos 7π π a cos d sin + 9 7π a sin+ 9 π 7π π a sin + 9 sin( ) + 9 a( ) תשובה: ערך האינטגרל המסוים הוא.
12 ג. נצייר את הסקיצה המתאימה של (, )f על פי תחומי החיוביות והשליליות הנתונים,. π π, כולל סימון הישרים:., הרי ש -. 7π π a cos d sin כיוון שהראינו כי גודל השטח הכולל הוא, לכן 7π π a cos d sin + 9 7π a sin+ 9 π 7π π a sin + 9 sin( ) + 9 a( 5) a. a.5 לכן, 4 a ו - תשובה:.5 a
13 עב ינואר מועד חורף שאלון 35 9 הפונקציה שיש להביא למקסימום היא שטח המשולש. ABC הוא קוטר, שאורכו נתון, R המאונך למיתר, AB ולכן חוצה את הקשת»AB. (אם ישר עובר דרך מרכז המעגל ומאונך למיתר אז הוא חוצה את הקשת שהמיתר נשען עליה) BCD α ולכן α ACD ב - CD נסמן את ב: נקבל : (על קשתות שוות נשענות זוויות היקפיות שוות). AC R cosα (Rcos α) sin ( α) R cos αsin α ( α) ACD α [ ] ולכן: '( α) R (cos α( sin α)sinα + cos αcos α) '( α) R (cosα sinαsinα + cosαcos α ) '( ) 4R cos cos3 α α α cosα cos3α 3α 9 + k α 3 + k < α < 9 α 3 < α < 9 π π π '( ) 4R cos cos3.r > ma π π π '( ) 4R cos cos3 R < קבלנו ש ABC הוא בעל שטח מקסימלי כאשר הוא שווה צלעות. R cos 3 sin 3 3 R ( ) R תשובה: השטח המקסימלי של הוא 3 3 יח"ר. 4 R ABC
ע 003 מרץ 10 מועד מיוחד פתרונות עפר
בגרות ע מרץ 0 מועד מיוחד שאלון 5005. x א. () יש למצוא את הערך של m שעבורו גרף + ) mx f ( x) mm ( 6) x + ( כאשר נציב m או 6 m נקבל 0 0 ונקבל פונקציה עולה ובהתאם הישר לא מקביל לציר ה - הוא ישר המקביל לציר
קרא עודMicrosoft Word - hedva 806-pitronot-2011.doc
ו- ( ( השייכים לתחום ההגדרה שאלה פתרון: א. לפי ההגדרה, f היא פונקציה זוגית, אם לכל ( ) שלה, מתקיים. f f נציב את במקום בפונקציה הנתונה ונקבל: ( ) ( ) ( ) + + + + ( ) f f f כלומר, הפונקציה היא זוגית. על
קרא עודתשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר
תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 313, 635863 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 תלמיד קנה 11 מחברות דקות ו- 4 מחברות עבות,
קרא עודMicrosoft Word - 38
08.05.6-80 - פתרון מבחן מס' 8 (ספר מבחנים שאלון 0580) t (v 75) (א) מהירות ההתקרבות של שני הרוכבים היא לכן הזמן שעבר מיציאת הרוכבים ועד הפגישה: קמ"ש, שעות 60 v 75 לפי הנתון בשאלה, נרכיב את המשוואות: 60
קרא עודMicrosoft Word - 14
9-5-27-4 - פתרון מבחן מס' 4 (ספר לימוד שאלון 3586) קמ"ש $ y קמ"ש % ppleסמן ב- קמ"ש את מהירות המכוppleית וב- y קמ"ש את מהירות המשאית () $ y 4 המשאית הגיעה ל- B לאחר המפגש עם המכוppleית כלומר ppleקבל את
קרא עודסט נובמבר 08 מועד מיוחד - פתרונות עפר.doc
נפתור את מערכת המשוואות y+ 3 = 5 5 7 3 2y + = 8 3 נארגן את המשוואה הראשונה 1/ 5/ y+ 3 5 = 5 1 y+ 3= 5(5 ) y+ 3= 25 5 8+ y= 25 /5 נארגן את המשוואה השנייה 3 1 3 / / / 2y 7 3 8 + = 1 3 1 6y+ 7 3= 24 7+ 6y
קרא עוד1 בגרות עח יולי 18 מועד קיץ ב שאלון x b 2 2 y x 6x שיעור ה- א x לכן, של קדקוד הפרבולה, ו-, מתקבל על ידי הנוסחה a. C(3, 9) ובהתאם, y. (3, 9) 2 C
8 מועד קיץ ב שאלון 58 x b y x x שיעור ה- א x לכן של קדקוד הפרבולה ו- מתקבל על ידי הנוסחה a C( 9) ובהתאם y ( 9) C 9 C הם x C ( ) תשובה: שיעורי קדקוד הפרבולה B A y x x ב הישר y 5 חותך את הפרבולה בנקודות
קרא עודא. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש בגרות סט יולי 09 מועד קיץ ב שאלון CAE, CEB כאשר לשני המשולשים גובה משותף
א. נציג את השרטוט המתאים ונסביר בהמשך: שטח המשולש גדול פי משטח המשולש 3 CAE, CEB כאשר לשני המשולשים גובה משותף, E בהתאמה. לכן, הנקודה BE.3: לצלעות AE מחלקת את ו- AB ביחס של ע"פ נוסחת חלוקת קטע ביחס נתון
קרא עודMicrosoft Word - SDAROT 806 PITRONOT.doc
5 יח"ל - תרגילים הכנה לבגרות תרגיל 8 נסמן ב- את האיבר הראשון ונסמן ב- את מנת הסדרה. על פי הנתון מתקיים: 6 ( S6 89 89 0 5 0 5 S0 S5 ( 0 5 0 t t 0 6 (. לפיכך, 89 5 נסמן t ונקבל: 5 t או או או 5 t נפסול את
קרא עודMicrosoft Word - 28
8-6-7-8 - פתרון מבחן מס' 8 (ספר לימוד שאלון 87) y M (, ) y מרכז המעגל החוסם את המשולש נמצא בנקודת חיתוך האנכים האמצעיים y y לצלעות המשולש: y M _, y y R M ( M) ( M) () R M y m 9 9 69 9 9 9 9 (ב) משוואת
קרא עודע 001 ינואר 10 מועד חורף פתרונות עפר
בגרות ע 00 ינואר 0 שאלון 50 הציר האופקי, ציר ה-, x מתאר את הזמן שעובר, בשניות, מתחילת השחייה כל משבצת היא בת 0 שניות הציר האנכי, ציר ה - y, מתאר את המרחק מקצה הבר כה כל משבצת היא בת 0 מטר כאשר הקו עולה
קרא עודבגרות עז יולי 17 מועד קיץ ב שאלון ,000 א. ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב-. 25% כאשר המחיר מתייקר ב- המחיר החדש הוא פי,
,000 א ניתוח הנתונים מחירה של ספה הוא שקלים, והיא התייקרה ב- 5% כאשר המחיר מתייקר ב- המחיר החדש הוא פי, 5% לכן, המחיר החדש הוא: 5,000 00 5 5 00 שקלים ממחירו הקודם 0005 תשובה: מחיר הספה לאחר ההתייקרות הוא
קרא עודמקומות גיאומטריים השתלמות קיץ הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל. פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטרי
מקומות גיאומטריים השתלמות קיץ - 015 הקדמה: נושא המקומות הגיאומטריים הינו מרכזי בתכנית הלימוד ל- 5 יח"ל פרק זה מאגד בתוכו את כל המרכיבים של הגיאומטריה האנליטית: ישר, מעגל, אליפסה ופרבולה בראיה מוכללת נושא
קרא עודסז 002 נואר 07 מועד חורף פתרונות עפר
הציר האופקי מציג את מספר פעימות המונה הציר האנכי מציג את המחיר שגובה חברת הטלפונים (שקלים) ב. א. יש למצוא מהו המחיר ל- 00 פעימות המונה הראשונות בחודש. הנקודה המסומנת בגרף, בעיגול, מראה כי עבור 00 פעימות
קרא עודמתמטיקה של מערכות
מתמטיקה של מערכות פתרון לתרגיל נגזור את שני האגפים לפי ונקבל : ) ולכן נתון ש- אז א ) e e נתון ש- א ) נגזור את שני האגפים לפי ונקבל: e, ולכן ) e e e ונקבל: נחלק את שני האגפים ב- נתון ש- ו- וגם ש- פונקציות
קרא עודאנליזה מתקדמת
א) א) ג) -- אוניברסיטת בן- מדור בחינות מס' גוריון בנגב תאריך הבחינה: 7/0/00 שם המרצים: פונף, בסר, טקצ'נקו, ליידרמן חדו"א א בחינה ב: 0--00 מס' הקורס: מתמטיקה,מדעי המחשב, הנדסת תכנה מיועד לתלמידי: א' מועד:
קרא עוד<4D F736F F D20FAF8E2E5EC20E0ECE2E1F8E420EEF2E5F8E D F9E0ECE5FA2E646F63>
< 0 a b b a > 0 נתון: מכאן ניתן לומר בוודאות כי -. a < b ab < 0 a 0 b > לא ניתן לקבוע בוודאות.. ( 0)?. לא ניתן לדעת. + ( + ) ( ) + + נתון: כמה ערכי שונים מקיימים את המשוואה?. אינסוף 0 +. תשובות ו נכונות
קרא עודעבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה אפריל 5105 קשה בלימודים, קל במבחנים, קל בחיים עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות
עבודה במתמטיקה לכיתה י' 5 יח"ל פסח תשע"ה יש לפתור את כל השאלות על דפים משובצים. רשמו את שמכם על כל אחד מהדפים הפתרונות יוגשו אחרי חופשת הפסח. מומלץ לכתוב דואר אלקטרוני, Whatspp כאשר נתקלים בקושי. מישהו
קרא עודתאריך הבחינה 30
אוניברסיטת בן-גוריון בנגב מדור בחינות 9//8 תאריך הבחינה : ד"ר ס. סמית, דר' דבורה שמות המורים : פרץ, פרופ' גריגורי דרפל מבחן ב: חדו"א ג' --9 מס' הקורס: מיועד לתלמידי: ביולוגיה, כימיה וגאולוגיה ב מועד: א
קרא עודMicrosoft Word - עבודת פסח לכיתה י 5 יחל.doc
עבודת פסח במתמטיקה לכיתה י' (5 יחידות) תרגילים שבעבודה על החומר שנלמד בכיתה ומיועדים לחזרה יש לעשות לא פחות מ- תרגילים מכל פרק אלגברה פתור את מערכת המשוואות הבאות: y x 1 y y 1 x y m x 1 x עבור אילו ערכים
קרא עודîáçï îúëåðú îñ' 1
5 יח"ל מבחני חזרה במתמטיקה - במתכונת בחינות הבגרות לפי מיקוד הבחינה - קיץ 003 "כדי לקלוע למטרה צריך לכוון קצת למעלה ממנה" בעריכת: סרור אסעד אפריל 003 (úåãå ð 50) 'ñî úðåëúî ïçáî 'à ìç äøáâìà,øåùéîä úñãðä
קרא עודMicrosoft Word - 01 difernziali razionalit
פונקציות רציונליות 5 יחידות מתוך הספר 806 כרך ד' 0, כל הזכויות שמורות ל ואריק דז'לדטי חל איסור מוחלט לתרגם, להעתיק או לשכפל חוברת זו או קטעים ממנה, בשום צורה ובשום אמצעי אלקטרוני, אופטי או מכני (לרבות
קרא עוד2019 שאלות מומלצות לתרגול מס' דיפרנציאביליות של פונקציה סקלרית )המשך(. כלל השרשרת. S = ( x, y, z) z = x + 3y על המשטח מצאו נקודה בה מישור משיק
דיפרנציאביליות של פונקציה סקלרית )המשך( כלל השרשרת S ( z) z + על המשטח מצאו נקודה בה מישור משיק מקביל : f ( ) + הפונקציה מוגדרת וגזירה ברציפות בכל M( ) שאלה נתון פרבולואיד אליפטי P ( z) + 6 + z + 8 למישור
קרא עודMicrosoft Word - solutions.doc
תחרות גיליס 009-00 הרי פוטר הגיע לחנות הדובשנרייה בהוגסמיד. הוא מגלה, שהכסף שלו מספיק בדיוק ל- סוכריות קוסמים ול- 5 קרפדות שוקולד, או בדיוק ל- 0 קרפדות שוקולד ול- 0 נשיקות מנטה, או בדיוק ל- 45 נשיקות מנטה
קרא עודפסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה -
פסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה יחס פרופורציה וקנה מידה נוסחאות הכפל המקוצר ופירוק לגורמים פתרון משוואות, אי שוויונות ומערכת משוואות ממעלה ראשונה שאלות מילוליות משוואות ריבועיות שברים
קרא עודטיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נ
טיפים להצלחה במהלך הבחינה 1. בתחילת הבחינה קראו היטב את כל השאלות וסמנו לעצמכם את השאלות המועדפות על ידכם. קראו כל שאלה לפחות פעמיים, כדי שלא תחמיצו נתון כלשהו.. אין צורך לענות על השאלות לפי סדר הופעתן.
קרא עודתרגול 1
תרגול rcsin d rcsin t d שאלה חשב את האינטגרלים המסוימים הבאים: sin cos d rcsin d sin cos d א ב ג פתרון שאלה סעיף א נציב dt sin d t cos עבור נקבל t cos cos עבור נקבל sin cos d tdt סעיף ב נפתור תחילה בעזרת
קרא עודMicrosoft Word - beayot tnua 3 pitronot.doc
ק( בעיות מילוליות - בעיות תנועה.7 פתרון: א. נסמן : קמ"ש קמ"ש מהירותו של הולך הרגל. מהירותו של רוכב האופניים. משך זמן הליכתו של הולך הרגל מקיבוץ א' לקיבוץ ב'. משך זמן רכיבתו של רוכב האופניים מקיבוץ א' לקיבוץ
קרא עודUntitled
2 אגודת הסטודנטים, בן-גוריון 3 פתרון מבחן מועד ב', חדו"א 2 להנדסת חשמל, סמסטר ב', תשע"ו שאלה : א הטור המגדיר את fx הוא טור טלסקופי. הסכומים החלקיים של טור זה הם S n x n k kxe kx k xe k x nxe nx x fx lim
קרא עוד<4D F736F F D20F4F2E5ECE5FA20EEE5EEF6E0E5FA20312E646F63>
1 תרגול פעולות מומצאות ( ( $ מה מהתשובות לא יכולה להיות תוצאה של הפעולה ) ( $ 1 הוגדרה פעולה חדשה $ + 1 1 + 10 + () () מה תוצאת הפעולה ) ( @ @ 10 = הוגדרה הפעולה החדשה 10 1 () 10 () 10 $ 19 $ 17 a) ( $
קרא עודפסגות ע"ש ברוך ונגר בית ספר על יסודי מקיף ומכללה עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " שכונה מערבית, רח' הפסגה 17 כרמיאל דוא"ל:
עבודת קיץ לבוגרי כיתה ז' קבוצת מיצוי " סדר פעולות חשבון עם מספרים מכוונים )1( כמובן יש להראות את דרך פתרון. תרגיל 0 1 : ( 3) 1 ( ) פתרו. שימו לב לסדר פעולות החשבון. תשובה 1 )( )3( )4( )5( )6( )7( )8( 30
קרא עודמטלת מנחה (ממ"ן) 11 הקורס: חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות 2,1 4 מספר השאלות: 7 משקל המטלה: נקודות סמסטר: ב 2007 מו
מטלת מנחה (ממ"ן) הקורס: - חשבון אינפיניטסימלי II חומר הלימוד למטלה: יחידות, 4 מספר השאלות: 7 משקל המטלה: נקודות 337 סמסטר: ב 7 מועד אחרון להגשה: אנא שים לב: מלא בדייקנות את הטופס המלווה לממ"ן בהתאם לדוגמה
קרא עוד<4D F736F F D20EEF9E5E5E0E5FA20E3E9F4F8F0F6E9E0ECE9E5FA2E646F63>
משוואות דיפרנציאליות מושגי ייסוד: משוואה המקשרת את גורם הפונקציה עם הפונקציה והנגזרות שלה או הדיפרנציאלים שלה, נקראת "משוואה דיפרנציאלית רגילה" לפתור משוואה דיפרנציאלית פירושו, למצוא את הפונקציה המקיימת
קרא עודLimit
פרק אינטגרל כפול לכן לפי משפט 55 )ראו גם את ההערה( שאלות :5 d cos( ) d [ ] [] שאלות עם פתרון שאלה 5 חשבו: פתרון 8 הפונקציה ) f ( ) cos( מתקיים: רציפה במלבן d cos( ) d d cos( ) d עדיף לחשב את האינטגרל השני:
קרא עודמשוואות דיפרנציאליות מסדר ראשון
אינטגרל מסוים i שאינו תלוי בחלוקה ] [ ובחירה m. S f סכום אינטגרלי + f + K i lim S כאשר i 0. I f I הגדרה אם קיים נקרא אינטגרל מסוים ומסומן הצבה.[ רציפות ב- ] אז הוא f g g g כאשר f g g כאשר udv uv vdu g
קרא עוד08-78-(2004)
שאלון 00 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן
קרא עודתרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L
תרגיל 9 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. תהי L השפה בעלת סימן פונקצייה דו מקומי G, סימן פונקציה חד מקומי T, סימן יחס תלת מקומי.c, d וקבועים L, K סימני יחס חד מקומיים,R לכל אחד מהביטויים הבאים,
קרא עודפונקציה מסדר ראשון; הגדרת קו ישר: - הצגה ע"י ביטוי אלגברי וגרפי
המרכז לחינוך מדעי תל אביב-יפו פתח דבר ספר זה שלפניכם, "מתמטיקה לפיזיקאים" הוא פרי יוזמה של חברי צוות חמד"ע, המתמודדים כל שנה עם הצורך בהתאמת הידע המתמטי של תלמידי הפיזיקה לדרישות הלימודים. תודתי העמוקה
קרא עודסדרה חשבונית והנדסית
.2 סדרות חשבוניות וסדרות הנדסיות n = 5 טבעי על-ידי כלל הנסיגה: + = an + 3. סדרה מוגדרת לכל n רשמו את ארבעת האיברים הראשונים בסדרה. הסבירו מדוע הסדרה הנתונה היא סדרה חשבונית עולה. מצאו את האיבר ה- 57 בסדרה.
קרא עודבחינה מספר 1
תוכן העניינים בחינה מספר 1 4 אלגברה: 4 חשבון דיפרנציאלי ואינטגרלי: בחינה מספר 6 אלגברה: 6 חשבון דיפרנציאלי ואינטגרלי: 7 בחינה מספר 3 8 אלגברה: 8 חשבון דיפרנציאלי ואינטגרלי: 9 בחינה מספר 41 אלגברה: 01 חשבון
קרא עודדף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n 1. y' n x n, y הנגזרת x.1 נכפול בחזקה )נרשום אותה משמאל ל- (. x א. נחסר אחד מהחזקה. ב
דף נגזרות ואינטגרלים לשאלון 608 כללים למציאת נגזרת של פונקציה: n n n, y הנגזרת נכפול בחזקה )נרשום אותה משמאל ל- ( א נחסר אחד מהחזקה ב 7 y כאשר גוזרים כופלים בחזקה, 7 כלומר נרשום אותה משמאל ל-, ובחזקה של
קרא עוד<4D F736F F D20F4FAF8E5EF20EEE5F2E320E020F1EEF1E8F820E120FAF9F2E3>
האקדמית תל אביב-יפו מבוא ללוגיקה ותורת הקבוצות מועד א' סמסטר ב' תשע"ד הפתרון לא נכתב על ידי גורם רשמי ובהחלט יכול להיות שנפלו טעויות פה ושם עשיתי כמיטב יכולתי אבל תשימו לב ותפעילו שיקול דעת אשמח לשמוע
קרא עוד<4D F736F F D20EEFAEEE8E9F7E420E020ECEBECEBECF0E9ED202D20E0E9F0E1F8F1E9E8FA20FAEC20E0E1E9E12E646F63>
מתמטיקה א' לכלכלנים גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים
קרא עוד<4D F736F F D20F4F8F720E7F9E9E1E420EBEEE5FAE9FA203120E9E5ECE E646F63>
הסברים לפרק כמותי : :úåðåëðä úåáåùúä 0 9 8 7 6 5 5 0 9 8 7 6 5. התשובה הנכונה היא: (). עלינו לקבוע איזה מהביטויים שבתשובות אינו זוגי. משום שהשאלה עוסקת בתכונת הזוגיות, ננסה ללמוד מהנתון על זוגיותם של x
קרא עודעבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם י
עבודת קיץ לקראת כיתה ט' - מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע
קרא עודמבוא לאנליזה נומרית na191 Assignment 2 solution - Finding Roots of Nonlinear Equations y cos(x) שאלה 1 היכן נחתכים הגרפים של? y x 3 1 ושל ממש פתרונות
מבוא לאנליזה נומרית na191 Assignmnt 2 solution - Finding Roots of Nonlinar Equations y cos() שאלה 1 היכן נחתכים הגרפים של? y 3 1 ושל ממש פתרונות בעזרת שיטת החצייה ובעזרת Rgula Falsi )אין צורך לפתור אנליטית(
קרא עוד. [1,3] ו = 0 f(3) f(1) = עמוד 1 מתוך 6 דר' ז. אולחא מס' הקורס 9711 חדו''א הנ מכונות 1 f ( x) = ( x 1)( x 2)( x 3) c= f c = c (1,3), c תשובות I 1) פונ
. [,] ו 0 f() f() עמוד מתוך 6 ז. אולחא מס' הקורס 97 חדו''א הנ מכונות f ( ) ( )( )( ) f (,), תשובות I ) פונ' לכן קיים פתרון רציפה וגזירה בקטע כך ש 0 ) (? f ( ) +, ± ± 0.58 (, ),.58,.4 יש n פעמים להשתמש
קרא עודHaredimZ2.indb
יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
5 עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי 5
קרא עודמצגת של PowerPoint
שלום לתלמידי י"א חמש יחידות מתמטיקה גיל קרסיק מורה למתמטיקה בשעה וחצי הקרובות נדבר על שאלון 806 סדרות הנדסיות וחשבוניות ארבעה תרגילים שהיו בבחינות בגרות ארבעה טיפים )טיפ אחד אחרי כל תרגיל שנפתור הערב(
קרא עודשאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימ
שאלון להערכה עצמית במתמטיקה לקראת לימודי שנה א מדוע להתכונן לשנה א מסלולי לימוד רבים באוניברסיטה (מדעי המחשב, הנדסה, פיזיקה וכמובן מתמטיקה) דורשים לימודי מתמטיקה בשנה א. אין מבחני כניסה לקורסים אלו, אולם
קרא עודפיסיקה 1 ב' מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א'
פיסיקה 1 ב' 203-1-1391 מרצים: גולן בל, משה שכטר, מיכאל גדלין מועד ב 03.08.2017 משך המבחן 3 שעות חומר עזר: דף נוסחאות מצורף, מחשבון אסור בהצלחה! חלק א' - שאלות אמריקאיות (כל שאלה - 5 נק') - יש לסמן תשובה
קרא עודMicrosoft Word - אלגברה מעורב 2.doc
תרגול אלגברה? ( ), (6 ) 6 9 נתון:. מהו ערכו של. () () () (). למה שווה? a ai. נתון: a + 9 + 6a () () 7 () () אף תשובה אינה נכונה?. ( ) ( + ) ( ) ( + ) ( + ) ( + ) ( + )( ) () () () (). נתון: + 0 z z z iz
קרא עודMicrosoft Word - shedva_2011
שיטות דיפרנציאליות ואינטגרליות הפקולטה להנדסה אוניברסיטת תל אביב גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה
קרא עודMicrosoft Word - tutorial Dynamic Programming _Jun_-05.doc
הטכניון מכון טכנולוגי לישראל אלגוריתמים (3447) סמסטר חורף 006/007 הפקולטה למדעי המחשב תכנון דינאמי תרגיל תת מחרוזת משותפת ארוכה ביותר תת-מחרוזת z k שקיימת סדרה עולה ממש,... z = z של מחרוזת נתונה x m,...,,
קרא עוד! 1! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) xyy = 1 x y xy 2 = 2xy 2 מצא את הפתרו' הכללי: x y y = 3 א) y ג) ב) ד) y tan x = y (1 ( x+ y
!! משוואות מסדר ראשו! (הפרדת משתני*, הומוגנית, לינארית) tan ( a a z 0 a z s ds dt (רמז: cos d d ז) d ( ) d ( ) ח) ) מצא את הפתרונות המקיימי :. () 0 ( ). (). () 0 d ( ) d ( ) π. sin ln ) tan cos d cos d
קרא עודמבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v m sec משך הבחינה 105 דקות. שאלה מספר 1 4
מבחן חוזר במכניקה 55 א יא יח""ללח פתור 3 מהשאלות 1-5 לכל שאלה 33%. חומר עזר מותר מחשבון ונוסחאון של בגרות. v sec משך הבחינה 105 דקות. שאלה מספר 1 4 גוף נע לאורך ציר X כך שברגע. x הוא נמצא 0 t 0-10 16 19
קרא עודMicrosoft Word - dvar hamaarehet_4.8.docx
מרכז ארצי למורים למתמטיקה בחינוך העל יסודי المرآز القطري لمعلمي الرياضيات في المرحلتين الاعدادية والثانوية מרובע חסום ועקשן, או נכדי מסר לטיפולי בעיה בגיאומטריה מדור: כתב: תקציר: זה קרה לי בכיתה אברהם
קרא עודפתרונות לדף מס' 5
X הוכיחו כי קבוצה X סגורה אמ"מ פתוחה P נקודה כלשהי עלינו למצוא כך ש- X P X פתרון: תהא X קבוצה סגורה ניקח נניח בשלילה כי לא קיים כזה, ז"א לכל קיימת כך ש- X מכיוון ש- P P נסיק כי d P, P סגורה מתקיים P B
קרא עודפתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: 2x+ y= 4 x+ y= 3 x y = 0 2x+ y = 3 x+ 10y= 11 א. 2x 2y= 0
פתרון וחקירת מערכות של משוואות לינאריות שאלות: 1( מצא אילו מהמערכות הבאות הן מערכות שקולות: x+ y= x+ y= 3 x y = 0 x+ y = 3 x+ 10y= 11 x y= 0 x y= 7 x y= 1 ד x = 3 x+ y = z+ t = 8 רשום את המטריצות המתאימות
קרא עודצירים סמויים - דגם סוס SOSS צירים 4 CS55555 CS5552 CS5554 CS55505 מק"ט דגם 34.93mm 28.58mm 25.40mm 19.05mm מידה A 26.99mm 22.23mm 18.2
סמויים - דגם סוס SOSS CS55555 CS555 CS555 CS55505 0 18 16 1 דגם.9mm 8.58mm 5.0mm 19.05mm מידה A 6.99mm.mm 18.6mm 1.9mm מידה B 19.70mm 17.8mm 117.8mm 95.5mm מידה C 1.70mm 9.5mm 5.56mm.97mm מידה D 7.1mm
קרא עודðñôç 005 î
ו - משופר נספח לשאלון 005 9005 תוכן עניינים: עמ' סדרות תוספת לאי-שיוויונים ממעלה שניה יישומים 40 (כולל יישום במשפט ויאטה לעומת הנספח הקודם, השאלות הבאות הוחלפו : עמ ' שאלה עמ ' שאלה עמ ' שאלה 6,7,8,9 0,
קרא עודמתמטיקה לכיתה ט פונקציה ריבועית
מתמטיקה לכיתה ט פונקציה ריבועית צוות המתמטיקה במטח: ראש תחום מתמטיקה: ד"ר שרה הרשקוביץ מנהלת צוות פיתוח מתמטיקה לבית הספר העל יסודי: ד"ר בבה שטרנברג צוות הפיתוח: רגינה אובודנקו, ד"ר אלכס אוליצין, אסנת
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לתלמידי יחידות
קרא עודא"ודח ב2 גרבימ הרש 1 רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא 13 בחרמב ינש גוסמ יוק לרגטניא L יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע (x(t)
א"ודח ב גרבימ הרש רפסמ האצרה סקוטס טפשמו בחרמב םיווק םילרגטניא בחרמב ינש גוסמ יוק לרגטניא יהי :ידי לע ירטמרפ ןפואב ראותמה בחרמב קלח םוקע ttt t r רשאכ ttt :עטקב תופיצר תורזגנ תולעב [ab]. יהי F תופיצר תורזגנ
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
- עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. לעבודה חלקים:. תרגול בסיסי לכל תלמידי
קרא עודשיעור 1
שיעור קצב גדילת פונקציות אנחנו בודקים את היעילות האסימפטותית של האלגוריתם, כיצד גדל זמן הריצה כאשר גודל הקלט גדל ללא גבול. בדר"כ אלגוריתמים עם "סיבוכיות" ריצה טובה יותר יהיו יעילים יותר מלבד לקלטים קצרים
קרא עודMicrosoft Word - Sol_Moedb10-1-2,4
הפקולטה למתמטיקה - הטכניון חיפה מד''ח - 48 חורף תשע''א - בחינה סופית מועד ב' שאלה : תהי נתונה המד"ח הבאה: u + uu = y א. מצא את העקומים האופייניים של משוואה זו בצורה פרמטרית. ב. פתור את המד"ח הנתונה לעיל
קרא עוד1 חשבון דיפרנציאלי ואינטגרלי II גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון
חשבון דיפרנציאלי ואינטגרלי II גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות
קרא עודעבודת קיץ לתלמידים כיתה ט' העולים לכיתה י (רמה 4-5 יחידות)
עבודת קיץ לתלמידי כיתה ט' העולים לכיתה י )רמה - יחידות( את העבודה יש להגיש למורה למתמטיקה תחילת שנה הבאה. בשבועיים הראשונים של שנת הלימודים יתקיים מבחן לפי העבודה. התייחסות רצינית להכנת העבודה היא תנאי
קרא עודחשבון אינפיניטסימלי מתקדם 1
חשבון אינפיניטסימלי מתקדם הסיכומים של דינה מבוסס על הרצאות ותרגולים מאת: פרופ' רז קופרמן מר אורי שפירא ירושלים 007 תוכן עניינים מרחבים מטריים 3 נספח א' נספח ב' הגדרות ודוגמאות 3 קבוצות מיוחדות במרחב מטרי
קרא עודפקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד
פקולטה: מחלקה: שם הקורס: קוד הקורס: מדעי הטבע מדעי המחשב ומתמטיקה מתמטיקה בדידה 2-7012610-3 תאריך בחינה: _ 07/07/2015 משך הבחינה: 3 שעות סמ' _ב' מועד ב' שם המרצה: ערן עמרי, ענת פסקין-צ'רניאבסקי חומר עזר:
קרא עודפתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז' 1. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. פתרון לחידו
פתרונות מלאים לשלב א' אולימפיאדה ארצית במתמטיקה חטיבה כיתות ז'. נתונה המשוואה השגויה הבאה: הזיזו גפרור אחד בלבד כדי שהמשוואה תהיה נכונה. לחידות גפרורים יש לעיתים פתרונות רבים. אנו הצענו במחוון אחד: ישנו
קרא עודאבן שפה רחבה ישרה, אריחי אקרסטון, טיילת הרצליה, נתנאל בן יצחק אדריכל. 2 אבני שפה כביש 13 אבני גן אלמנטי תיחום 21 גומה לעץ וחבקים 26 תיעול וניקוז אבני
אבן שפה רחבה ישרה, אריחי אקרסטון, טיילת הרצליה, נתנאל בן יצחק אדריכל. אבני שפה כביש 3 אבני גן אלמנטי תיחום גומה לעץ וחבקים 6 תיעול וניקוז אבני שפה תיחום וניקוז תו ירוק מוצר חדש אבני שפה תיחום וניקוז: אבני
קרא עודmivhanim 002 horef 2012
מבחן מספר 1 (שאלון 00 חורף תשע"ב) בשאלון זה שש שאלות. תשובה מלאה לשאלה מזכה ב- 5 נקודות. מותר לך לענות, באופן מלא או חלקי, על מספר שאלות כרצונך, אך סך הנקודות שתוכל לצבור לא יעלה על. 100 אלגברה (x+ 5)
קרא עודאוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,653 באר-שבעISRAEL 10584P.O.B. 653, BEER SHEVA , המזכירות האקדמית המרכז ללימודים
אוניברסיטת בן-גוריון בנגבNEGEV BEN-GURION UNIVERSITY OF THE ת.ד.,65 באר-שבעISRAEL 058P.O.B. 65, BEER SHEVA 8 05, המזכירות האקדמית המרכז ללימודים קדם אקדמיים אלגברה - נוסחאות הכפל מקוצר גיליון תרגילים מס'
קרא עודמספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בי
מספר זהות: סמסטר ב' מועד א' תאריך: 11102/4// שעה: 9:22 משך הבחינה: 3 שעות חומר עזר: אין מותר השימוש במחשבון פשוט בחינה בקורס: מבני נתונים מרצה: הדר בינסקי הנחיות: יש לענות על כל השאלות. יש לענות על כל
קרא עודMathType Commands 6 for Word
0 אלגברה לינארית גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד שאלות תלמידים וטעויות נפוצות וחוזרות
קרא עודתורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב
תורת החישוביות תרגול הכנה לוגיקה ותורת הקבוצות מה יש כאן? בקורס תורת החישוביות נניח ידע בסיסי בתורת הקבוצות ובלוגיקה, והכרות עם מושגים בסיסיים כמו א"ב, מילה ושפה לטובת מי ששכח חומר זה, או שלא למדו מעולם,
קרא עודמבנים בדידים וקומבינטוריקה סמסטר אביב תשע"ט מספרי רמזי תרגול 11 הגדרה: (t R = R(s, הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול(, קיים
מספרי רמזי תרגול 11 הגדרה: (t R = R(s הוא המספר הטבעי הקטן ביותר כך שבכל צביעה של צלעות הגרף וכחול( קיים תת-גרף שלם K s שצבוע בכחול או שקיים תת-גרף שלם K t שצבוע באדום. הגדרה שקולה: עבור גרף עם לפחות (t
קרא עודיחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר x תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. y יואב ש רטט כך: y תומר אמר: אי-אפשר
יחידה 8: שיקוף, הרחבה וכיווץ של פרבולות שיעור 1. שיקוף בציר תלמידים התבקשו לשרטט פרבולה שכל הערכים שלה שליליים. יואב ש רטט כך: תומר אמר: אי-אפשר זיו ש רטט כך: מי צודק? נשקף בציר את הגרף של, = ונלמד את
קרא עודMicrosoft Word - ExamA_Final_Solution.docx
סמסטר חורף תשע"א 18 בפבואר 011 הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצה: מתרגלים: רן אל-יניב נועה אלגרבלי, גיא חפץ, נטליה זילברשטיין, דודו ינאי (אחראי) סמסטר חורף תשע" מבחן סופי פתרון (מועד
קרא עודrizufim answers
ÌÈÙÂˆÈ מדריך למורה פעילות זו היא פעילות חקר לבדיקת כל אפשרויות הריצוף שבהן סידור מצולעים סביב קודקוד הוא זהה. המצולעים שבהם ישתמשו התלמידים הם: משולש שווה צלעות, משושה משוכלל וריבוע - כולם בעלי צלע באותו
קרא עודMicrosoft Word - beayot hespek 4 pitronot.doc
בעיות מילוליות - בעיות הספק.6 פתרון: נסמן: מספר המכשירים שתיקן טכנאי א' בשעה אחת (קצב עבודתו). ( ) כל אחד מהטכנאים תיקן מספר המכשירים שתיקן טכנאי ב' בשעה אחת (קצב עבודתו). 0 מכשירים, לכן: 0 שעות משך זמן
קרא עודשיעור מס' 6 – סבולות ואפיצויות
שיעור מס' 6 סבולות ואפיצויות Tolerances & Fits Tolerances חלק א' - סבולות: כידוע, אין מידות בדיוק מוחלט. כאשר אנו נותנים ליצרן חלק לייצר ונותנים לו מידה כלשהי עלינו להוסיף את תחום הטעות המותרת לכל מידה
קרא עודáñéñ åîéîã (ñéåí)
מתו% 5 בסיס ומימד סיום) במסגרת הוכחת משפט של בסיסי לכל שני בסיסי של אותו מ"ו יש אותו מספר איברי ), הוכחנו בעצ יותר: משפט: א V מ"ו נוצר סופית, A V קבוצה בת"ל, B V קבוצה פורשת אז. A B הערה: מרחב וקטורי הוא
קרא עודתרגול מס' 7 – חזרה על MST ואלגוריתם Dijkstra
תרגול מס' 10 תכנון ליניארי תכנון לינארי הינו כלי שימושי במדעי המחשב. בקורס ראינו כיצד ניתן להציג בעיות שונות במסגרת תכנון לינארי. בנוסף, ראינו שימושים לדואליות של תוכניות לינאריות, אשר מקשרת בין בעיות
קרא עודהטכניון מכון טכנולוגי לישראל אלגוריתמים 1 )443432( סמסטר חורף הפקולטה למדעי המחשב תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגור
תרגול 9 מסלולים קלים ביותר תרגיל APSP - 1 עד כה דנו באלגוריתמים לפתרון בעית מסלולים קלים מציאת מסלולים קלים ביותר מצומת ביותר ממקור יחיד. כלומר, V לכל צמתי הגרף. בעיה אחרת הקשורה לבעיה זו היא בעית ה-(
קרא עודMicrosoft Word פרק 16 - פתרון משוואות רמה א
0.0. דף עבודה פתרון משוואות ושאלות מילוליות נתונות שתי משוואות שקולות. 8 60 הסבירו מדוע המשוואות שקולות. 6) 4( שקולה למשוואות אלו? האם המשוואה 8 מצאו שתי משוואות נוספות השקולות למשוואות בסעיף. () משוואות.
קרא עוד. m most לכל אורך השאלה, במקרה של כוח חיכוך: = 0.01 [kg]; μ א. נתון: = 0.1 k f k = μ k N = μ k mg a = μ k g תור ראשון: לאחר שג'וני גלגל את הגולה הראשו
. m mot לכל אורך השאלה, במקרה של כוח חיכוך: = 0.01 [kg; μ א. נתון: = 0.1 k f k = μ k N = μ k mg a = μ k g תור ראשון: לאחר שג'וני גלגל את הגולה הראשונה שלו ל (3 (,2, צ'אק מכוון לעברה ופוגע. חישוב המרחק
קרא עודפתרון מוצע לבחינת מה"ט מכניקה טכנית 93117,90117 מועד א' תשע"ט, חודש שנה : אביב, 2019 שאלה 1 מנוף ABCD מחובר בנקודה A לסמך נייח, ובנקודה E נתמך בסמך ני
פתרון מוצע לבחינת מה"ט מכניקה טכנית 97,97 מועד א' תשע"ט, חודש שנה : אביב, 9 שאלה מנוף D מחובר בנקודה לסמך נייח, ובנקודה E נתמך בסמך נייד. בנקודה מופעל על המנוף כוח [] =P בכיוון המתואר. במצב זה המנוף נמצא
קרא עודסיכום אינפי 2 28 ביולי 2010 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה ב
סיכום אינפי 2 28 ביולי 200 מרצה: צביק איתמר, בעזרת סיכומים משיעוריו של נועם ברגר מתרגלים: ינאי ג', איב גודין אין המרצה או המתרגלים קשורים לסיכום זה בשום דרך..אינני לוקחת אחריות על מה שכתוב מטה. השימוש
קרא עודMicrosoft Word - madar1.docx
משוואות דיפרנציאליות רגילות גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת מתמטיקה באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות תלמידים וטעויות נפוצות
קרא עודתאריך פרסום: תאריך הגשה: מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש לה
תאריך פרסום: 01.01.15 תאריך הגשה: 15.01.15 מבנה נתונים תרגיל 5 )תיאורטי( מרצה ומתרגל אחראים: צחי רוזן, דינה סבטליצקי נהלי הגשת עבודה: -את העבודה יש להגיש בזוגות. -העבודה חייבת להיות מוקלדת. -הקובץ חייב
קרא עודאי שוויונים ממעלה ראשונה לארבע יחידות
אי שיוונים ממעלה ראשונה ל יח"ל. נעמי ברנס/כהן. המחברות: מיטל מתלון/מיכאלי. רטל חדד/בן רחמים הנחיות לשימוש בחוברת "אי שויונים ממעלה ראשונה" לתלמידי יח"ל החוברת מיועדת ללימוד עצמאי למי שלא למד את הנושא.
קרא עודבמתמטיקה בגרויות + פתרונות וידאו מלאים (3 יח ל שאלון 182/183) וידאו מלאים לכל השאלות בחוברת ב- MY.GEVA.CO.IL פתרונות הבחינות הראשונות במתנה! שתי אפליק
במתמטיקה בגרויות + פתרונות וידאו מלאים ( יח ל שאלון 8/8) וידאו מלאים לכל השאלות בחוברת ב- MYGEVACOIL פתרונות הבחינות הראשונות במתנה! שתי אפליקציית MYGEVA חדש! אותי מאחור חפשו לשנת 08-09 עדכני הקדמה מורים
קרא עודמועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מו
מועד: א בחינה סופית במתמטיקה דיסקרטית משך הבחינה: 2 1 שעות מרצה: פרופ' תאופיק מנסור תאריך: 26.01.2018 2 סמסטר: א תשע"ח m 2 הוראות לנבחן: )1( הבחינה מורכבת מ- 6 שאלות. כל שאלה מזכה ב- 20 נקודות כך הנקודות
קרא עודעמוד 1 מתוך 5 יוחאי אלדור, סטטיסטיקאי סטטיסטיקה תיאורית + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- 2 תחומים עיקריים- סטט
עמוד מתוך + לוחות שכיחות בדידים/רציפים בגדול מקצוע הסטטיסטיקה נחלק ל- תחומים עיקריים- וסטטיסטיקה היסקית; בסטטיסטיקה היסקית משערים השערות, משווים בין קבוצות באוכלוסיה ועוד, אך גם מ ניתן ללמוד הרבה על האוכלוסיה-
קרא עודה ש ל מ ת מ ש פ ט ים ש א ל ה מ ס פ ר 1: ע ד ן ש ל מ כ ב י ת ל אב יב ב כ ד ור ס ל, ו ל כ ן מ ק פ יד ל ל כ ת ה ק ב וצ ה כ ש מ ת אפ ש ר ל ו. ל מ ש ח ק י
ה ש ל מ ת מ ש פ ט ים ש א ל ה מ ס פ ר 1: ע ד ן ש ל מ כ ב י ת ל אב יב ב כ ד ור ס ל, ו ל כ ן מ ק פ יד ל ל כ ת ה ק ב וצ ה כ ש מ ת אפ ש ר ל ו. ל מ ש ח ק י א. ש ח ק ן ב. ת ומ ך ג. ש ומ ר ד. א וה ד ה.ע וב ד ש
קרא עוד